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1. INTRODUCTION 

1.1 Background and main objectives 

The resilience of economic infrastructure is critical to the continued provision of services on 

which everyday socio-economic activities depend. Economic infrastructure, such as electricity, 

digital communication, water supply, railways, and roads, are large interdependent networked 

systems. The vulnerability and resilience assessment of each of these infrastructure networks 

depends on understanding how failures in one network can result in cascading impacts across 

others. Quantifying vulnerabilities requires a system-of-systems approach underpinned by data 

on real-world networks’ physical structure, their operational characteristics, and failure 

characteristics. Such analysis allows improved decision-making from the knowledge and tools 

to geospatially identify vulnerable locations and assets that have the most impact on systemic 

performance. Understanding of vulnerabilities, possible modes of failure and consequences 

provides the rationale for actions required for enhancing infrastructure system resilience. 

 

This report describes the work done, in developing a system-of-systems modelling approach, 

by Oxford University in the ‘Resilience Study Research for NIC’ project, which was 

commissioned by the National Infrastructure Commission (NIC). The project timeline was 

from September 2019 till May 2020. The system-of-systems approach is demonstrated for UK 

with national-scale network representations of electricity, road and rail transport, public water 

supply and digital communication networks, capturing their interdependencies. 

 

As outlined by the NIC, the purpose of the project was three-fold1: 

1. To pilot an approach to assess the key physical vulnerabilities of the current UK economic 

infrastructure system  

2. To draw out vulnerabilities that arise from network architecture and how these are likely to 

change in the future.  

3. To inform the development of a framework to identify actions to assess, improve and 

monitor the resilience of the system.  

In response to the above, we satisfied the NIC’s main requirements1 for us, which were to: 

1. Identify a range of vulnerabilities characteristics that arise from the architecture of the UK 

economic infrastructure network, in consultation with the NIC. Each characteristic should 

be accompanied by criteria to establish the relative importance of the characteristic in 

different parts of the system as well as compared with others, for example based on impacts.  

2. Develop a model to assess the most relevant of these characteristics for the current UK 

economic infrastructure system, and likely changes in the future.  

3. Use the model to produce a preliminary assessment of these characteristics and their 

relative importance. 

4. Identify some resilience enhancing options for reducing network vulnerabilities and 

evaluate the effectiveness of these options.   

Specifically, to assess national infrastructure network vulnerabilities, the main questions 

answered during the project included:     

1. What are the different (inter)dependencies between networks and how do these affect 

failure propagation? 

                                                 
1 From NIC Terms of Reference 
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2. Can we see a difference in the failure propagation if we increase the connections between 

networks? 

3. What is the effect of adding backups to the different interdependent nodes? What are the 

failure sequences and over what timeframe do they occur?  

4. Can we identify a list of possible characteristics of the UK infrastructure networks that 

provide indications of the vulnerabilities of the system, as well as its resilience? 

5. How do we establish criteria to identify the relative importance of each characteristic in 

different parts of the system as well as compared to other characteristics? 

6. How would the network vulnerabilities change in the future under different planning 

scenarios? 

 

1.2 Key findings 

1.2.1 Effects of different resilience enhancing options 

To understand how network interdependencies influence failure cascades, we looked at all 

single point (node) initiating failure events in electricity and telecoms networks and their 

propagation into other networks. Throughout the analysis it was assumed that for utility 

networks of electricity, water supply and telecoms the network nodes were considered to have 

failed only when they lost all their service. Partial failure states, where nodes might still be 

operating at below 100% operational levels and providing reduced service were not considered. 

For transport networks of railways and roads we assumed that failures were initiated in a way 

similar to the utility networks with nodes completely losing their ability to provide service, and 

we also accounted for disruptions to nodes that lost part of their pre-disruption journeys due to 

network failure propagation. The assumption that failure led to total loss of service was 

considered appropriate because we were interested in understanding worst-case scenarios of 

large-scale widespread disruptions.      

 

We looked at two types of resilience options: (1) the effects of adding more connections 

between networks, which would provide alternative ways of providing essential infrastructure 

services; and (2) the effects of incorporating backup electricity supply into telecoms, water and 

road assets, which would substitute for lost electricity network supply but only for limited 

durations.  

 

We first considered the case where networks were connected such that each dependent node of 

one network derived its supply from only one node of the other network. This case, called 

‘single connections with no backup supply’, signified the baseline case for representing 

networks connections and resilience. Subsequently we considered the following resilience 

enhancing options:  

1. Two connections (2C) – By connecting each dependent node of one network to two nodes 

of the supplying network; 

2. Three connections (3C) – By connecting each dependent node of one network to three 

nodes of the supplying network;  

3. Backup supply (B) – By assuming that some assets had backup electricity supply lasting a 

certain duration based on random gamma distribution survival rates.  The telecoms and 

water nodes were assumed to have backup electricity supply lasting from 2 hours to 72 

hours, while some roads with tunnels were assumed to have 24 hours of backup electricity 

supply;  

4. Two connections and with backup supply (2C+B) – which combined options 1 and 3 above;  
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5. Three connections and with backup supply (3C+B) - which combined options 1 and 3 

above. 

 

Our analysis showed that in the baseline case of all failure events initiated in the electricity 

network, about 40% of failure events led to further disruptions to telecoms and at least one of 

rail and water. A further 20% of failure events led to further electricity failures, and 5.7% to 

another order of telecoms failures. By enhancing resilience to the 2C option electricity initiated 

cascading failures were reduced significantly, with about 5.6% events leading to telecoms and 

at least one of rail and water disruptions, with further 0.9% events leading to electricity failures, 

and 0.11% to another order of telecoms failures. Further improvements were created with the 

3C option, though they were only marginal relative to the 2C case.   

 

Similar analysis of failures initiated in the telecoms network showed that in the baseline case 

about 7.8% failure events led to electricity and at least one of rail and water disruptions, with 

1.8% events leading to further order of telecoms failures. With the 2C and 3C resilience 

enhancing options cascading failures from telecoms to other networks were almost eliminated, 

with about 0.3% events leading to electricity and at least one of rail and water disruptions, and 

a further 0.02% events leading to another order of telecoms failures. 

   

We also compared the failure impacts for each network, and cumulatively in terms of two 

metrics: (1) the numbers of disrupted users (residential customers over a day); and (2) the 

macroeconomic input-output (IO) losses in £million/day over the UK economy comprising 129 

industry sectors.  

 

The analysis showed that, in the baseline case, single failures initiated from the electricity 

network had the potential to cause the largest disruption of about 8 million users/day 

cumulative across all networks. This was mainly due to a knock-on effect on the water network. 

But the highest macroeconomic output losses, across the whole UK economy, of about £6.7 

million/day were mainly due to railways with disruptions affecting a significant proportion of 

its total capacity. With the 2C resilience enhancing option the highest cumulative failure 

impacts were reduced to around 2.6 million user disruptions or £4.9 million/day, which was a 

different event from the baseline case. Most of the high impact failures in the water network 

were eliminated in comparison to the baseline case, while railway disruptions were still 

producing largest economic losses. The 3C option further reduced the highest cumulative 

failure impact to 1.3 million user disruptions or £3.8 million/day due to telecoms and railway 

failures initiated from electricity failures. Similar analysis for failures initiated in the telecoms 

network showed that in the baseline case the largest cumulative disruption of about 7 million 

users or £7 million/day economic output losses were mainly from knock-on effects on the water 

and railway networks in terms of user disruptions. But these were completely eliminated with 

the 2C and 3C resilience options, where the highest cumulative failure impacts resulted in 

280,000 user disruptions or £0.36 million/day economic output losses mainly due to failure 

being confined to the telecoms network with some disruptions propagating towards the 

electricity networks only.  

 

The economic loss analysis also showed that direct economic demand losses from 

infrastructure user disruptions led to total output losses that were between 1.41 – 2.36 times of 

the direct losses, which signified the economic multiplier effects of infrastructure driven 

demand side disruptions to the macroeconomic IO system.       
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To understand the effectiveness of the electricity backup supply option (B) in a systemic way, 

we re-simulated each of the 50 worst-case failure events in the baseline case, ranked by their 

total user disruptions across all networks. For each event we performed 20 simulations 

assuming a failure lasting over a 100-hour timeframe and with different gamma distribution-

based survival times for backup supply durations of telecoms, water and road assets. We then 

estimated the time-averaged values of the disruptions across the 50 events with 20 simulations 

per event. Our analysis showed that on average backup supply effects prevented worst-case 

disruptions from growing until around 10 hours after which the impacts grew significantly to 

around 24 hours and further until up to 42 hours when the electricity backup supply of telecoms 

exchanges was first exhausted, followed by road and water backups being exhausted. Over 100 

hours backup electricity supply helped reduce systemic worst-case electricity-initiated network 

failure impacts by 17% and systemic worst-case telecoms-initiated network failure impacts by 

7%. About 33%-75% of the total avoided disruptions occurred between the first 10-30 hours 

when most of the backup supply was still working. This highlighted the importance of having 

backup supply and crucially also showed that if the original disrupted networks were to be 

restored then there are significant gains that can be made if the repairs occurred within 10-30 

hours after the initiating failure event. Especially, if the repairs happened closer to 10 hours 

then most of the cascading disruptions could be avoided.  

 

Overall applying all resilience options to the systemic analysis of the 50 worst-case electricity-

initiated disruptive events, ranked by total customer disruptions across all networks, in the 

baseline case showed that for the 2C and 3C options disruptions from electricity networks were 

reduced by about 70%,  telecoms by 91%-95%, water and road disruptions by at least 90% and 

at most 100%, and railways 82%-93%. The backup supply (B) options were most effective for 

roads where on average disruptions are reduced by about 40%, from the baseline and for other 

networks the gains were between 10%-23%. For combined backup and increased connection 

options, the biggest gains are made in the electricity networks where the 2C+B option reduced 

disruptions on average by 78% and the 3C+B option reduces disruptions on average by 81%, 

a gain of 10%-13% over the options with no backup supply. This showed that adding backup 

electricity supply to other networks could in turn reduce and delay further cascading impacts 

on the electricity network and help avoid disruptions. The total cumulative disruptions were 

reduced on average by 89% (2C+B) and 94% (3C+B) when considering the combinations of 

backup supply and increased network redundancies. Since all these worst-case disruption 

events in the baseline scenario resulted in cumulative disruptions between 1 - 8 million users 

and £0.5 - £6.7 million/day such gains were quite significant. 

 
1.2.2 Future network vulnerabilities and resilience options   

We analysed the resilience of future configurations of national infrastructure systems, based 

on NIC recommendations in the National Infrastructure Assessment (see Section 3.8), mainly 

by creating future electricity networks for the year 2050 based on supply and demand 

projections for the UK. Two future electricity scenarios were considered, where 70% of the 

generation mix in the electricity supply would be made up of renewables: (1) Hydro70 – Where 

domestic heating would be predominantly provided through hydrogen gas; and (2) Elec70 – 

Where demand for heating by electrification would be very high. The future electricity network 

has about 820 more new links due to adding new interconnectors and renewable energy (solar, 

batteries, onshore and offshore wind) sources to the current electricity network.  

 

We performed a systemic assessment of the future network failures in a similar manner to the 

current networks. The analysis showed that, for the baseline single connection case, in 



                                                                                                                          

9 | P a g e  
 

comparison to the current electricity network-initiated failures there are about 199 (2.7%) 

fewer instances of cascading failures in the future networks, which was due to some additional 

network redundancy created in future electricity networks by adding new renewable sources. 

When the degrees of connections were increased to two (2C) there were about 104 (8.3%) 

fewer instances of cascading failures in the future networks than the current networks, and for 

the three degree of connections case (3C) there are about 78 (8%) fewer instances of cascading 

failures in the future networks. Few differences were seen in future failure propagation initiated 

in the telecoms networks. For all the high impact events the user disruptions in the future 

increased in proportion to increased demands from projected population increases in the future. 

But there were significant numbers of events where the impacts were almost eliminated. These 

instances were the ones where adding future generation capacity seems to have provided gains 

in terms of reducing the impacts. 

 

We assumed that future economic impacts would grow based on compounded GDP growth 

forecasts for the UK. Assuming 1.9% GDP growth rate projection till 2050, the analysis 

showed that the worst-case economic output losses in the future baseline case would be as high 

as £14 million/day and mostly economic losses would be 1.9 – 2 times current baseline loss 

levels. Applying the resilience enhancing options, explored in the current scenarios, to the 

future networks showed similar gains across sectors when reducing the averaged disruptions 

for the 50 worst-case future baseline events. The future baseline disruptions were reduced by 

85%-92% with a combination of increased connections and backup supply (2C+B and 3C+B) 

being most effective. All these disruptive impacts in the future baseline case were in excess of 

1 million users/day and £1 million/day added across all networks and economy and were as 

high as 10 million user/day and about £14 million/day. 

 

Another possible option for enhancing resilience of the future electricity networks was to 

consider the possibility that Electric vehicles (EV) could be used as backup supply options for 

residential consumption, when the grid supply would be disrupted. We explored this option by 

analysing the total disrupted electricity demand load in MW versus the user disruptions and 

the proportion of this demand that could be satisfied by the installed EV capacities in MW that 

existed at the locations of disruptions. The analysis showed that the installed EV capacity had 

more potential of being effective as a backup in the Hydro70 future scenario, in comparison to 

the heat demand intensive Elec70 scenario. For the Hydro70 scenario between 20%-40% of 

the disrupted MW demand load could be satisfied by installed EV capacity for some of the 

high user disruption events, and the percentages were in excess of 60% for some instances 

where user disruptions were between 1,300 – 170,000 residential customers. Generally lower 

values of user disruptions would occur at locations of sparse populations, where the electricity 

grid connections and accessibility might not be very good. Hence, repairs to restore the 

electricity supply to such locations might take time, making in worthwhile to explore the EV’s 

as a source of supply to households. 

 

  

1.3 Quality assurance 

This study explored the possible impacts of infrastructure failure events that have not been 

observed in the past. Because the analysis deals with rare events that have not been observed 

it is challenging to validate it. Nonetheless, to help ensure that the results are robust and provide 

a credible basis for policy decisions, we have done a series of quality assurance (QA) checks 

throughout the duration of this study. Some of the QA actions are described below: 
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1. The methodology is based on previous research that has been published in peer-review 

journals and widely cited in the scientific and practitioner communities. These papers are 

cited throughout this report. Thus, the methodology has passed the standards of 

independent academic peer review. 

2. The infrastructure data used in this study has been created from the latest best-known open-

source resources on each sector, such as Ordnance Survey, Google Maps, OpenStreetMap, 

UK government websites, and network operators’ data portals. In several instances 

geospatial network assets locations and connections information were verified with satellite 

imagery to improve the network spatial accuracy. Because our data sources are open and 

publicly available, they can be verified by third parties. See Appendix D for data sources. 

3. We have conducted a thorough internal peer review of this report with team members who 

are well-known experts in infrastructure network modelling and systems analysis. 

4. There has been continued dialogues and weekly meetings with the NIC throughout this 

project. NIC have arranged expert review of some aspects, which has been documented 

and discussed with the research team. 

5. The NIC arranged face-to-face and virtual stakeholder meeting with academics and sector 

experts to assist with data collection, model assumptions, model validation and review of 

the interim results. 

6. All assumptions and limitations of this study have been clearly stated throughout this report 

and are also summarised in Appendix C.         
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2. METHODOLOGY 

2.1 Network modelling 

We define infrastructure systems as the collection and interconnection of all physical facilities 

and human systems that operate in a coordinated way to provide infrastructure services2. This 

definition is relevant here because the scope of our study is specific to understanding the 

impacts of physical vulnerabilities to physical infrastructure systems. The continuous 

availability of reliable infrastructure services is crucial for economic prosperity and long-term 

sustainability3. Hence, the use of the term economic infrastructure4 to refer to the systems 

under consideration in the study.     

 

Economic infrastructure are large-scale spatially distributed systems with complex interactions 

that deliver essential services to society and the economy. It is difficult to develop unifying 

models that can completely represent the underlying collection and interconnection of all 

physical facilities and human systems to a suitable level of complexity. Several modelling 

approaches, each with their strengths and limitations, have been used for modelled 

infrastructure systems in the context of risk and resilience analysis. For most recent detailed 

literature reviews of different models and methods see Ouyang (2014)5, Hosseini et al. (2016)6, 

Saidi et al. (2018)7. We have adopted a network modelling approach to suitably represent the 

infrastructure systems for the purposes of this analysis. Such an approach, embedded in 

network-science theories8,9 and widely applied to real world cases5,6,7,10, is most suitable for 

this study because we can leverage upon previously created  data and models11,12,13,14,15. Some 

of these are discussed later in this document.  

 

A network here is defined as a collection of nodes joined together by a collection of links. 

Nodes are point representations of key locations of physical facilities and human systems in 

the infrastructure systems – electricity substations, water treatment plants, rail stations, etc. 

Links are line representations of physical connections between node pairs – electricity overhead 

cables, road sections, railway lines, etc. Links could also represent notional connections by 

joining straight lines between node pairs, to represent interactions that are not physical. The 

term asset is also frequently used here in this report to refer to network nodes and links. The 

                                                 
2 Hall, J.W., Tran, M., Hickford, A.J., & Nicholls, R.J. eds. (2016). The Future of National Infrastructure: A System-of-Systems Approach. 

Cambridge University Press. 
3 https://www.nic.org.uk/wp-content/uploads/CCS001_CCS0618917350-001_NIC-NIA_Accessible.pdf 
4 https://www.nic.org.uk/wp-content/uploads/NIC_Resilience_Scoping_Report_September_2019-Final.pdf 

5 Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability engineering & 
System safety, 121, 43-60. 

6 Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability 

Engineering & System Safety, 145, 47-61. 
7 Saidi, S., Kattan, L., Jayasinghe, P., Hettiaratchi, P., & Taron, J. (2018). Integrated infrastructure systems—A review. Sustainable cities 

and society, 36, 1-11. 

8 Lewis, T. G. (2011). Network science: Theory and applications. John Wiley & Sons. 
9 Barabási, A. L. (2016). Network science. Cambridge university press. 

10 Zio, E. (2009). Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety, 94(2), 125-141. 

11 Thacker, S., Pant, R., & Hall, J. W. (2017). System-of-systems formulation and disruption analysis for multi-scale critical national 
infrastructures. Reliability Engineering & System Safety, 167, 30-41. 

12 Pant, R. Hall, J.W. and Blainey, S.P. (2016). Vulnerability assessment framework for interdependent critical infrastructures: case study 

for Great Britain’s rail network. EJTIR, 16(1): 174-194, ISSN 1567-7141. 
13 Thacker, S., Barr, S., Pant, R., Hall, J. W., & Alderson, D. (2017). Geographic hotspots of critical national infrastructure. Risk 

Analysis, 37(12), 2490-2505. 

14 Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood 
exposure. Journal of Flood Risk Management, 11(1), 22-33. 
15 Oughton, E. J., Ralph, D., Pant, R., Leverett, E., Copic, J., Thacker, S., ... & Hall, J. W. (2019). Stochastic Counterfactual Risk Analysis 

for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks. Risk Analysis. 
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description or quantification of the arrangement of nodes and links is called the network 

topology. 

 

In addition to topology the functional attributes of network nodes are also needed to be able to 

assign the direction of flow of resources11. There are three types of node functions that are 

included in the network model: (1) source/origin nodes – from where network services are 

generated or originate; (2) sink/destination nodes – from where network services are delivered 

to users or other networks or where the end of the service happens; and (3) intermediary nodes 

– that transmit network services from the source nodes towards the sink nodes. Between a 

chosen source and sink the flow of services is traced along a directed flow path, which includes 

all the assets traversed in the direction from the source to the sink. Overall all possible directed 

flow paths that can be traced between sources and sinks provide us with a complete 

understanding of how the network topology facilities the flow of services.     

  

With growing recognition that infrastructure systems do not exist in isolation, the main interest 

in research5 and policy (especially for the NIC)16,17 is in understanding their 

interdependencies18, which represent the mutual interactions between different types of 

infrastructure systems. For this study as well, the key consideration is to understand and model 

how interdependencies between networks influence vulnerabilities. While there have been 

several ways in which infrastructure interdependencies have been conceptualized5, the 

interpretations of Rinaldi et al. (2001)18 apply the most to the context of this study because they 

are described in the context of disruptions. Utilising Rinaldi’s characterizations, network 

interdependencies of interest include: (1) Physical – where two nodes are physically connected 

by a link to exchange material outputs, so the failed state of one influences the other; (2) Cyber 

– where the state of a network asset depends on information transmitted through information 

infrastructure, so it fails due to cyber failures; (3) Geographic – when multiple network assets 

are in close geographical proximity, making them susceptibility to fail from the same external 

shock events; and  (4) Logical – which explain how network asset failures link to users 

(customers) and economic systems (industry sector) that go beyond physical, cyber or 

geographic interdependencies. The flow path mapping also creates functional 

interdependencies11,12,13,14 which include the functional understanding of flow of resources 

across physical systems using the wider network topology.    

 

In the network models built for this study the interdependencies (or dependencies) are 

translated into directed network links to infer the flow of services between networks. In most 

cases the network representations capture functional (inter)dependencies, which result from 

physical (inter)dependencies. Having considered telecoms as one of the infrastructures, we also 

account for cyber-physical dependencies on telecom assets. By mapping customers and the 

economic impacts of infrastructure disruptions we also account for logical (inter)dependencies.  

One of the key challenges of modelling networks connectivity to represent their real-world 

connections is the lack of data to inform such connectivity. This is especially and most critically 

true to mapping interdependent connections. For example, if we knew that a particular railway 

station derived its electricity from a known electricity substation, then we can create a notional 

link between the two in the network model if the actual overhead/underground cable 

information is not known. This level of accurate data might be available for some locations in 

the country, but it is currently next to impossible to procure for the whole national-scale 

                                                 
16 https://www.apm.org.uk/media/18859/national-infrastructure-briefing-lr-v2.pdf 
17 https://www.nic.org.uk/wp-content/uploads/NIC_Resilience_Scoping_Report_September_2019-Final.pdf 

18 Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure 

interdependencies. IEEE control systems magazine, 21(6), 11-25. 

https://www.apm.org.uk/media/18859/national-infrastructure-briefing-lr-v2.pdf
https://www.nic.org.uk/wp-content/uploads/NIC_Resilience_Scoping_Report_September_2019-Final.pdf
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analysis. Hence, where data is not available, but it is known that two types of sector assets 

should be connected, we assume that they connect by creating straight line links between the 

right kind of assets nearest to each other. In most cases this assumption is quite valid because 

the nearest connection represents the path of least resistance of service flows and is also most 

cost effective in terms of materials and design of systems.  

 

Figure 2-1 shows a schematic representation of the network topology and directed connections 

between sources and sinks within a network and the dependent links across networks. 

 

 
Figure 2-1: Schematic representation of network topology and directed dependencies across sectors. 

While conceptualising infrastructure networks it is also assumed that they are organised in a 

layered hierarchical structure, where larger nodes with wider national-scale network influence 

are at the top of the hierarchy and smaller nodes with localised network influence are at the 

bottom11,14. A typical example of this is the electricity network (see Figure 3-1) in which the 

big power generation sites form the top layer, followed by the transmission network (400kV) 

substations layer below, going all the way to the lowest substations (6.6kV) that supply power 

to customers/households.  

 

Based on the definitions outlined above, Figure 2-2 (adapted from Thacker et al. 201711) shows 

a final generalised system-of-systems (network-of-networks) representation of all networks 

built for this study. As can be seen from the figure each network can be conceptualised in a 

layered network structure where goods and services are delivered to the customers who are the 

common metric across sectors. While mapping interdependencies between different 

infrastructure networks the appropriate layer of connections is selected to represent the flow of 

services across systems.  
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Figure 2-2: System-of-systems conceptualisation of infrastructure networks and their interdependencies 

(adapted from Thacker et al. 201711). 

2.2 Failure and impact analysis 

Following the creation of network models, failure analysis involves removing nodes or links, 

individually or several, to trigger an initiating event that might lead to further failure cascades. 

Throughout the analysis it is assumed that failure meant that a node completely lost its service. 

Partial failure states, where nodes might still be operating at below 100% operational levels 

and providing reduced service were not considered. The assumption of total loss of service is 

considered appropriate because we are interested in understanding worst-case scenarios of 

large-scale widespread disruptions. There are two ways in which the cascading effects proceed: 

(1) to the nodes and links in the closest neighborhood of the initiating asset; and (2) assets 

farther away that stop receiving service because their flow paths included the initiating asset, 

which is now discontinued. An illustration of failure initiation and propagation conceptualized 

across multiple networks (layers) is shown in Figure 2-3 (from Thacker et al. 201711), where 

edges is another term used for links. Here the failure is initiated in node 𝑛5 in system 𝑆2, 

following which all nodes in system 𝑆3 fail because they either lose their dependency (node 

𝑛6) or all flow paths directed towards them (𝑛7,𝑛8). The failure propagation also affects nodes 

(𝑛2,𝑛3) directed towards to 𝑛5 because the services delivered by them cannot reach further, 

due to which there might be some loss of service. 
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Figure 2-3: Schematic representation of failure propagation across networks (from Thacker et al. 201711) 

 

The failure impact or network vulnerability is the measure of the service provision affected due 

to failures of network nodes and links from external shock events12. In this study affected 

service provision is measured in terms of the aggregated numbers of customers disrupted or 

value of service lost over a service demand area associated with each disrupted sink node. The 

aggregated numbers of customers disrupted or value of service, called service demands, are 

first grouped at detailed spatial disaggregations, which differs for each sector. For example 

electricity service demands assocaited with sink substations are all first grouped at the Local 

Super Output Area (LSOA) which are roughly 41,000 area polygons across Great Britain, 

while water service demand areas are grouped to sink nodes at coarser resolutions of 128 Water 

Resource Zones (WRZs). The electrtcity and water servcie demand areas are then grouped at 

their sink nodes. The service demands in terms of customer numbers depend of census data on 

only residential customers that can be mapped and grouped to the service demand areas for the 

specific sector’s sink nodes. For transport networks the service demands are estimated only as 

total passenger (customer) flows along nodes and links, since one of the main services provided 

by transport is the mobility of people. Unlike utility networks the service demand areas of 

transport assets are not limited to fixed areas. Hence, we model transport origin-destination 

(OD) flows in this study and assign them statically along the flow paths to infer the volumes 

of passenger (customer) trips assigned and subsequently disrupted. This also creates a 

distinction in the way the impacts are estimated in utility networks and transport networks. In 

the former impacts are measured for only those nodes that lose all service when they no longer 

have acess to any flow path, while in the latter impacts are measured for nodes that also lose 

part of their pre-disruption journeys as there might be reduced numbers of flow paths through 

them. Details of each sector’s demand mapping are provided in Section 3.1 – 3.5. 

 

In order to capture the cascading effect of interdependent network failures, a distinction is made 

between the network of the initiating event and every subsequent failure propagation to other 

networks. Figure 2-4 shows the schematic representation of a direct service demand 

disruptions in the network where the initiating event (marked X) takes place, while the indirect 

service demand disruptions happen in the dependent network due to loss of service from the 

initiating failure network. In this study we are interested in tracking the number of failure 

sequences that trigger indirect service demand disruptions. Hence, we use the term Order 0 to 

represent a direct (initating) service disruption network effect and subsequently Order n (>0) 
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to track futher sequences of indirect service demand disruptions. In the exaple demonstration 

of Figure 2-4 there is an Order 1 indirect service demand disruption, showing the failure 

propagated once across networks. 

   

 
Figure 2-4: Representation of direct and indirect service disruptions across interdependent networks.     

Another vulnerability metric estimated in this study is the macroeconomic loss occurring in the 

whole economy comprised of infrastructure and non-infrastructure sectors. We use a demand-

side Leontief Input-Output (IO) model19 for estimating the macroeconomic losses across 129 

sectors that make up the UK national accounts20. The macroeconomic model is not spatially 

disaggregated below the UK-scale. The model translates the customer disruptions due to 

infrastructure failures into household demand losses, which signify direct economic losses. 

Subsequently indirect economic losses are estimated by balancing the economic output supply 

to meet reduced demands. The final outcome of the IO analysis is to produce loss estimates in 

£/day. Details of the IO model are given in Section 3.10. 

  

2.3 Incorporating resilience  

2.3.1 Adding backup supply 

The term resilience, which has gained a lot of prominence in literature6, involves assessing the 

ability of the system to provide infrastructure services including the ability to adsorb, adapt 

and recover from shocks or gradual changes21. Infrastructure network resilience is quantified 

by measuring the vulnerability along with the duration of recovery of assets and networks. In 

this study the recovery dimension of resilience is not considered, mainly due to lack of data 

and understanding of how long disruptions last and what measures of recovery planning are 

put in place by infrastructure operators, regulators, and users (households and businesses). 

Nonetheless another approach to quantify some resilient behavior in systems is considered by 

assuming the disruptions last over a certain time frame and are delayed in some assets due to 

the provision of backup supply to maintain service if the supplying network fails. These backup 

supply options characterize two elements of resilience here: (1) Robustness – The ability of a 

network to absorb the initial shock and continue operating at a certain level of functionality 

after disruption; and (2) Redundancy – The ability of the network to absorb the initial shock 

                                                 
19 Leontief, W. (Ed.). (1986). Input-output economics. Oxford University Press. 
20 https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/datasets/ukinputoutputanalyticaltablesdetailed 
21 From NIC Terms of Reference 

https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/datasets/ukinputoutputanalyticaltablesdetailed
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impact by providing alternative connection options when disrupted. For all asset backup 

durations are assumed to be probabilistic, which reflects the uncertainty in the durations of 

backup supply in providing resilience against the spread of disruptions. 

2.3.2 Changing degrees of interdependencies 

Network redundancy is also captured in the network’s flow path characteristics by tracing 

allowable flow paths from one source to several sinks and vice versa, thereby guaranteeing 

connectivity of the flows if a single source-sink flow path is affected. In the case of 

interconnectivity, the redundancy is very low because mostly it is assumed that between two 

networks assets connect in single pairs. What this means is that a single railway station is 

assumed to derive its electricity for a single electricity substation. In reality this might not be 

the case, especially for large nodes (major power plants, stations, telecoms) in the system. To 

overcome the data gap in the model we have tested the failure outcomes under three varying 

degrees of connections described as following: 

1. One connection mapping – where each selected asset of one infrastructure is connected to 

one asset of the infrastructure it is dependent upon. For example, linking each railway 

station to its nearest electricity substation for electricity supply. 

2. Two connection mapping – where each selected asset of one infrastructure is connected to 

two assets of the infrastructure it is dependent upon. For example, linking each railway 

station to its nearest two electricity substation for electricity supply. 

3. Three connection mapping – where each selected asset of one infrastructure is connected 

to three assets of the infrastructure it is dependent upon. For example, linking each railway 

station to its nearest three electricity substations for electricity supply. 

 

The aim of adding more connections is mainly to test if there are any gains in reducing the 

disruptive impacts across sectors if there were more redundancy between networks. In some 

cases, it might not represent the actual cross-sectoral connections, especially if the second or 

third nearest dependency node might be much farther than the nearest one. In such cases we 

have assumed a distance threshold of 10km to truncate the creation of dependency links, 

assuming that links longer than this will be unrealistic.            

 

2.4 Changing networks in the future 

A key interest for the NIC was to know how network vulnerabilities might evolve under 

specific future planning scenarios. The information for future scenarios mainly comes from the 

National Infrastructure Assessment (NIA) published by the NIC22. For understanding changing 

vulnerabilities due to these scenarios, some high-level recommendations from the scenarios 

were taken and translated into changes in the network models and their interdependencies.  

 

Though different NIA scenarios have different timelines, we assumed they would be achieved 

fully by the time at which we analysed the changes to the networks and their resulting 

vulnerabilities and resilience. Hence, the general principle was to represent ‘one state’ of the 

networks each in the present and the future where: 

1. State is the static representation of: (A) Network topology; (B) Network flows; (C) 

Customer demands; (D) Economic losses.     

2. Current state – Whatever latest data we can get show the state as a representative of the 

year 2017, which was chosen based most of the current data was latest to this year. 

3. Future states – Inferred data based on the scenarios in the year 2050. 

                                                 
22 https://www.nic.org.uk/wp-content/uploads/CCS001_CCS0618917350-001_NIC-NIA_Accessible.pdf 

https://www.nic.org.uk/wp-content/uploads/CCS001_CCS0618917350-001_NIC-NIA_Accessible.pdf
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Based on the data received from the NIC three future planning options were considered in the 

analysis, as shown in Table 2-1. The Hydro70 and Elec70 are electricity specific scenarios 

where 70% of the generation mix in the electricity supply would be made up of renewables but 

heating is predominantly provided by hydrogen gas and electrification respectively. The choice 

of 70% was based on the NIC’s assessment that these would be the most realistic futures given 

the current renewable energy trajectory and future nuclear phasing decisions being made in the 

UK. Their implications on the network analysis are discussed below, while the details of the 

underlying data are described later. In our analysis we study the effects of Hydro70 + 100% 

EV sales as one case, and Elec70 + 100% EV sales as another. 

 
Table 2-1: Future scenarios from the NIA and their translation in network topology, flow, and failure 

models. 

Future scenarios 
Network topology 

modifications 

Flow/demand 

modifications 

Implications on 

failure analysis 

1. Hydro70 – 

Electricity 

generation is 

mainly driven by 

increased 

renewable uptake 

with lower gas, oil 

and coal uptake 

and domestic 

heating is 

predominantly 

provided through 

hydrogen gas 

• Electricity network 

topology changes due to 

adding and removing new 

source nodes 

• All other networks 

topologies remain the same 

• New interdependent 

connections added due to 

new electricity nodes 

• A 2050 electricity 

demand profile from 

aggregated estimates23 

is merged with a spatial 

electricity demand 

model 

• All sector customer 

demands change based 

on future population 

projections 

• Topologically 

changes in the 

electricity network 

will change the 

flow paths and 

hence disruption 

outcomes 

• Increased 

customer 

disruptions due to 

population in 

increases will be 

seen for other 

networks 

2. Elec70 – 

Electricity 

generation is 

mainly driven by 

increased 

renewables 

supported by gas 

and demand for 

heating by 

electrification is 

very high 

3. Preparing for 100 

per cent electric 

vehicle sales 

• No changes to road or 

electricity topology 

• All other networks remain 

the same 

• Added transport EV 

demand will add more 

load onto the electricity 

network 

• Will increase 

electricity service 

demand losses 

• EV demands will 

be tested as 

alternative backup 

supply options  

    

 

 

 

 

 

 

 

                                                 
23 https://www.ofgem.gov.uk/ofgem-publications/55666/157018blensappendices.pdf 

https://www.ofgem.gov.uk/ofgem-publications/55666/157018blensappendices.pdf
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2.5 Methodology implementation 

To build the networks models and estimate the network vulnerability outcomes, under different 

assumptions described above, the methodology and implementation steps for spatial 

vulnerability assessment are explained in Table 2-2. These steps are based on system-of-

systems methodological approaches built previously to inform assessments at the national-

scale (Great Britain)24.  

 
Table 2-2: Methodology and implementation steps in estimating the relative importance of vulnerability 

characteristics 

Step 1.  

Topology creation 

Assemble disjointed spatial nodes (points) and edges (line) assets  

Connect nodes pairs by physical or notional edges 

Identify connections between networks 

Step 2.  

Flow assignment 

Assemble data to assign attributes to nodes and edges 

− source-sink characteristics 

Get data on flow performance metric of network 

− source supply volumes 

− sink demand values 

Map all source-sink paths and assign static flows on paths 

Step 3.  

Customer assignments 

Assemble data on customer demands at sink nodes 

Infer customer demands by combining asset service areas with census/building stock data 

Step 4.  

Economic losses 

Build economic Input-Output (IO) model 

Link infrastructures to economic sectors 

Translate flow and customer disruptions to direct economic flow losses 

Estimate indirect economic flow losses from IO model 

Step 5.  

Estimate vulnerability 

characteristics/metrics 

 

Quantify characteristic/metric in 3 stages 

− Only based on topology 

− Topology + static flows 

Step 6.  

Failure analysis 
Rank nodes and edges based on failure outcomes 

Step 7.  

Results 

Direct and indirect estimates of 

− Number of nodes/edges affected; proportion of the network affected 

− Number of people affected 

− Macroeconomic impacts 

− Spatial location of the impacts 

− Spatial clustering of the impacts 

− Spatial extension of the impacts 

Step 8: 

Incorporating backups 

− Perform the analysis by assuming the failures last over a certain time period and some 

disruptions are delayed due to backup supply 

− Incorporate uncertainty in the durations of backup supply for each asset 

Step 9: 

Future network changes 
Incorporate all future scenario changes in Step 1-8 

 

  

                                                 
24 Pant, R., Thacker, S., Hall, J., Barr, S., Alderson, D., & Kelly, S. (2016). Analysing the risks of failure of interdependent infrastructure 

networks. The Future of National Infrastructure: A System-of-Systems Approach, p241. 
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3. UNDERLYING DATA AND ASSUMPTIONS 

This section describes the infrastructure network data on electricity, telecoms, water, railways, 

and roads assembled for this study. For each infrastructure the network topology structure is 

explained, with the flow metrics, failure modelling assumptions taken in this study, the spatial 

aggregations of customers, and the spatial scale of the models. The assumptions taken in 

creating interdependencies across networks are also explained, along with the assumptions 

about backup supply. The future network changes and data are also discussed in detail. The 

data accessibility issues associated with harnessing data to build the models are described 

throughout. It is noted here that although most of the raw data available for such models is 

available online, such data were in various formats and contained data gaps that had to be 

corrected in order to translate them into the network models. Hence, while raw data was 

obtained from existing open-source resources, the final network created is an original ITRC 

product that cannot be found anywhere else. 

 

3.1 Electricity network 

The electricity network representation in this study consisted of identifying the power 

generation sites and substations and joining them with overhead and underground cables. The 

main aim of this model was to capture the possible ways in which electricity is delivered from 

power generation sites to the transmission grid, and then from the distribution networks 

towards the final users. The model represented the locations of key power generation sites, 

smaller embedded generation sites, 400kV and 275 kV substations in the transmission network, 

and 132kV, 66kV, 33kV, 11kV and 6.6kV substations in the distribution networks. The 11kV 

and 6.6kV substations represented the lowest voltages that connect to customers.   

    

3.1.1 Network topology 

The network topology, represented as a hierarchical network, is shown in Figure 3-1. Here each 

hierarchy is connected to the one below it, but there might be several connections that skip one 

or two hierarchies and connect to the lower levels directly. The overall network consisted of 

18,061 geolocated nodes out of which 2,565 represented the generation sites. There were 

13,245 links representing overhead lines and underground cables. The locations of the nodes 

were collected and verified from several sources   and meticulously checked with satellite 

imagery as best as possible. Several of the substation locations data at the distribution level 

were simply obtained from Google Maps and OpenStreetMap. Similar data sources were used 

for geolocating the link information, which has lesser accuracy in terms of the geometries but 

more accuracy in terms of connecting the right types of nodes to each other.  

 

The links within the same layer in the hierarchy were bidirectional to represent the possibility 

that electricity would flow in both directions. But the links between with the transmission 

(275kV – 400kV), High Voltage (HV) (66 kV – 132 kV) and Low Voltage (LV) (< 66kV) 

distribution layers were directed to show the step-up and step-down transformers that convert 

electricity voltages before they are distributed. This meant that in the creation of source-sink 

flow paths the direction of flow was always from transmission to high voltage to low voltage 

network nodes.    
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Figure 3-1: Topological representation of a hierarchical electricity network for Great Britain. 

 

3.1.2 Demand allocation 

There were two types of demand allocations for electricity nodes: (1) in terms of the loads in 

MW; and (2) the numbers of customers of electricity. Both these demands were estimated at 

4,897 sink nodes corresponding to mostly the 11kV and 6.6kV substations. Also, data on the 

supply capacities of the generation sites was collected to identify the source nodes and also to 

check that supply was greater than the demand. The allocations of demands in MW was first 

done at the 380 Local Authority District (LAD)25 administrative area levels for Great Britain, 

using an energy demand model26 that accounted for household and industry usage of electricity 

at every hour throughout the year. We extracted the peak hourly demand over the whole year 

from this model, because we were only concerned with assessing one state of the system and 

the peak load would be the state when the network is under most stress.  

 

                                                 
25 https://geoportal.statistics.gov.uk/datasets/local-authority-districts-december-2017-full-clipped-boundaries-in-great-britain  
26 Eggimann S, Hall JW, & Eyre N (2019). A high-resolution spatio-temporal energy demand simulation to explore the potential of heating 

demand side management with large-scale heat pump diffusion. Applied Energy, 236, 997-1010. 

 

https://geoportal.statistics.gov.uk/datasets/local-authority-districts-december-2017-full-clipped-boundaries-in-great-britain
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The LAD level data was further disaggregated and grouped to the Local Super Output Area 

(LSOA)27 level of which there were 41,667 polygons in Great Britain. The disaggregation at 

this finer scale was done by assuming the energy usage within each LSOA was in proportion 

to its building areas, where the data from building footprints was obtained from the Ordnance 

Survey (OS) MasterMap28. From the LSOA levels the demands were aggregated or grouped at 

the sink nodes based on identifying the nearest nodes for each LSOA. Both MW and population 

demands were allocated with this method, which in the end resulted in allocating demands at 

the sink node levels of the network.      

 

3.1.3 Failure analysis  

Electricity network failures were estimated in terms of the numbers of customers at the demand 

nodes disrupted when some nodes were removed from the network. Since each demand node 

had customers on it, it was straightforward to assume that all those customers would be 

disrupted if their demand node failed. For every other node failure, the possible disruptions in 

all flow paths through the node was checked to infer if there would be any resulting disruption.  

 

First, we mapped all the possible directed flow paths between every source node and sink node 

in the network. This was done because it was assumed that if there were a failure anywhere in 

the network then electricity service flow would still be maintained as long as there was a source 

to supply electricity and a functioning path to the sink nodes. Given the large numbers of 

sources (2,565) and sinks (4,897) the path mapping resulted in creating 1,002,837 unique 

source-sink paths. By mapping so many flow paths we are accounting for the redundancies in 

the network, in terms of maintaining electricity supply when some source-sink flows would 

not work. Given that the links are directed from the transmission to HV and LV distribution 

levels, the flow paths are directed accordingly, with no sources connected at the lower levels 

supplying to sinks at the upper levels in accordance to the expected flow of electricity. Previous 

studies11,13 have shown that this approach gives a reasonable estimate for realistic failure 

outcomes of network failures.   

 

When a failure was initiated in the electricity network all the paths containing the failed nodes 

were considered disrupted and removed from the set of flow paths. If there were further nodes 

that lost all their flow connectivity due to the removal of the disrupted flow paths, then these 

were also considered to have failed due to complete loss of any flows through them. If any of 

the final set of disrupted nodes were demand nodes, then their allocated demands were summed 

up to estimate the disrupted customers. 

 

3.2 Digital communications network 

Digital communications consist of three main types of technologies including fixed networks 

(fibre/coaxial/copper etc.), wireless terrestrial networks (cellular, WiFi, Tetra, etc.), and 

satellite networks (geosynchronous, low or medium earth orbit)29. In this analysis we focussed 

on the main fixed and wireless terrestrial networks. The coverage of these technologies in this 

study was over Great Britain. 

 

                                                 
27 https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-layer-super-output-area-lsoa-boundaries  
28 https://www.ordnancesurvey.co.uk/business-government/tools-support/open-mastermap-programme  
29 Oughton, E.J., Tran, M., Jones, C.B., Ebrahimy, R., 2016. Digital communications and information systems, in: The Future of National 

Infrastructure: A System-of-Systems Approach. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107588745.010 

 

https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-layer-super-output-area-lsoa-boundaries
https://www.ordnancesurvey.co.uk/business-government/tools-support/open-mastermap-programme
https://doi.org/10.1017/CBO9781107588745.010
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Figure 3-2 illustrates the system modelled in this analysis consisting of: 

• A core network – a high-capacity long-distance transportation network consisting of fibre 

optic cables.  

• An internet exchange network – local access consisting of either fixed fibre, coaxial cable 

or copper. 

• A cellular network – consisting of wide-area macro cells, as well as a smaller number of 

local high-capacity small cells. 

Figure 3-2 also shows the connections between the exchanges and macro cells to other 

network assets, which is discussed in detail later. 

 
Figure 3-2: Schematic model of the digital communications system structure and its connections to other 

sectors. 

Digital communications assets are cheaper and easier to deploy than other infrastructure 

sectors. For example, it can take numerous decades to plan, design and build a high-speed 

railway or nuclear power plant. In contrast, the deployment of a new generation of cellular 

technology, such as 5G, is estimated to take ~7 years to reach most of the population (90%)30. 

Hence, the digital communications sector experiences generational changes on a decadal basis.  

Data availability is a serious problem which constrains the type of analysis that can be 

undertaken for digital communications networks31. Most digital assets are deployed by private 

companies and therefore data on precise location, or capacity of coverage information, can be 

limited as this is treated as commercially sensitive. Although governments do have the power 

to obtain this data from private operators, as there can be hundreds of operators this is usually 

only undertaken for the largest asset owners.  

 

Considering this context, this analysis focused on the main operators. One of the largest owners 

is BT, formally known as British Telecom, which owns the previously nationalised networks 

of telephone exchange assets. We had limited information on the network topology of the BT 

network, except for some information reported on several open websites. Figure 3-3 reports 

the information we had, which included approximately 20 core node locations, 86 metro nodes, 

1000 Tier 1 Multi-Service Access Nodes (MSANs) and 4,400 small and medium exchanges.  
 

                                                 
30 Oughton, E.J., Frias, Z., 2018. The cost, coverage and rollout implications of 5G infrastructure in Britain. Telecommunications Policy, 

The implications of 5G networks: Paving the way for mobile innovation? 42, 636–652. https://doi.org/10.1016/j.telpol.2017.07.009 
31 Oughton, E.J., Frias, Z., Dohler, M., Whalley, J., Sicker, D., Hall, J.W., Crowcroft, J., Cleevely, D.D., 2018. The strategic national 

infrastructure assessment of digital communications. Digital Policy, Regulation and Governance 20, 197–210. 

https://doi.org/10.1108/DPRG-02-2018-0004 

https://doi.org/10.1016/j.telpol.2017.07.009
https://doi.org/10.1108/DPRG-02-2018-0004
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Figure 3-3: Hierarchical network architecture of the BT telecoms exchanges.   

 

3.2.1 Network topology 

To translate the network concept into spatially network topology, several datasets were used in 

the analysis. Firstly, we obtained information on the approximate service areas  of over 5,000 

exchange (the fixed network) by mapping them to ~1.5 million postcodes served across all 

exchanges in Great Britain. Postcode data was also required to map this information into 

exchange boundary areas (as emphasised already in Figure 3-2). After the service areas of the 

exchanges were created their node locations were approximated as the centroids of each area 

polygon.  

 

For estimating core locations and other layers of the fixed network, information on the BT’s 

21st Century Network (21CN) was obtained. A total of 85 exchanges were identified as metro 

nodes, with 12 of these being outer code nodes, and 8 being inner core nodes. Inner core nodes 

were fully meshed (connected) to all other inner core nodes and outer core nodes were triple 

parented (connected) to the inner core. Metro nodes were dual parented (connected) to the 

nearest core nodes, and then all lower level exchanges were dual connected to the nearest two 

exchanges. Remote areas and islands were treated separately, and exchanges on such areas 

were connected to each other via a minimum spanning tree32 (by connecting all exchanges with 

the least number of links, such that each exchange pair connects only to its closest exchange) 

and then connected to the mainland via the nearest Tier 1 MSAN exchange.  

 

Cellular asset data was taken from online sources and pre-processed to identify single site 

macro cell locations by buffering all points by 50 meters33, dissolving overlapping shapes and 

estimating the site location by using the polygon centroid. This resulted in creating 33,062 

macro cell nodes. Cellular site traffic was routed (‘backhauled’) into the internet exchange 

network using the straight-line path to the nearest serving exchange. This created a radial 

                                                 
32 Graham, R. L., & Hell, P. (1985). On the history of the minimum spanning tree problem. Annals of the History of Computing, 7(1), 43-57. 
33 Oughton, E.J., Frias, Z., Russell, T., Sicker, D., Cleevely, D.D., 2018. Towards 5G: Scenario-based assessment of the future supply and 

demand for mobile telecommunications infrastructure. Technological Forecasting and Social Change 133, 141–155. 

https://doi.org/10.1016/j.techfore.2018.03.016 

https://doi.org/10.1016/j.techfore.2018.03.016
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network structure between the exchanges and clusters of macro cells dependent links to each 

exchange. Since the flow of information in the network could take place in both directions 

between any two connected node pairs, overall the network had 97,992 links to represent the 

connections and information flow between nodes in the network. Figure 3-4 shows the result 

of creating the different layers of the telecoms networks. 

 

 
Figure 3-4: Topological representation of the different layers of the digital telecoms network for Great 

Britain. 

3.2.2 Demand allocation 

The demands allocated to the exchanges and macro cells were in terms of the numbers of 

customers assigned over their service areas. While the service areas of the exchanges were 

created from the data described in the previous sections, for the macro cells service areas were 

created by assuming each macro cell served locations nearest to it. This resulted in creating 

Voronoi polygons11 as service area for the macro cells. 

 

The population layer used to allocate customers to the telecoms nodes was at the Local 

Authority Distract (LAD) level, of which there were 380 polygons covering Great Britain with 

population estimates for 2017. First the LAD populations were disaggregated at the postcode 

level based on weighing by each postcode’s coverage density intersecting a particular LAD 

polygon. This coverage density was estimated in terms of number of address point connections 

for telecoms at the post code levels. 4G information on coverage by local authority was also 

taken from Ofcom’s Connected Nation report (2018)34. Postcode sector coverage was 

estimated by disaggregating local authority coverage, based on the thesis that Mobile Network 

Operators (MNOs) rationally upgrade sites in the highest population density areas first in order 

                                                 
34 Ofcom, 2018. Connected nations 2018: UK report. Ofcom, London. 
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to serve as many potential customers as possible, but also to serve areas of high traffic with the 

most efficient technology. The postcode assigned populations were then intersected with the 

respective exchange and macro cell polygons to estimate the total populations assigned to these 

assets.  

 

The above allocation of customer demands only accounted for fixed residential populations 

within LAD’s. Given that mobile connectivity is variable throughout the day and in fact might 

be highest during the working hours of the day due to commercial usage, for the macro cells a 

further day time working population allocation was done to compare with the residential 

population estimates. Data for the working population was obtained from official labour market 

statistics35 and Scottish Census data36, but unfortunately was only updated to 2011 as the latest 

figures. Hence, for each LAD we compared the ratio of the working and residential populations 

in 2011 and multiplied by the 2017 residential census numbers to get the working population 

estimates. The final population chosen for a LAD was the maximum of the two estimates, 

which was then disaggregated to the postcodes and macro cell services areas as described 

before.         

 

3.2.3 Failure estimation model 

Failures in the telecoms network were estimated in terms of the numbers of customers of macro 

cells or exchanges disrupted when nodes are removed from the network. Since clusters of 

macro cells were assumed to be radially dependent upon one exchange, if the exchange failed 

then all the macro cells also lost service and hence customers. The failures of the exchanges 

not failed directly depended upon their connectivity to the core network, which had a lot of 

redundancies. Hence, in the network model we assumed that as long as there was a flow path 

(route) connecting an exchange to at least one of the core nodes, the exchange would not fail 

indirectly from failures at other locations of the network. 

 

The numbers of telecoms customers disrupted due to failures of both macro cells and exchanges 

were estimated to be the minimum from the two types of nodes, based on the assumption that 

the least spatial coverage would be affected due to such failures. If an exchange failed and there 

were macro cells service areas within its boundary that were linked to another working 

exchange then the customers within those areas would be still able to get mobile coverage and 

assumed not disrupted. Although we acknowledge that this might not fully represent the impact 

on the customer, it is the best assumption possible without further data. 

 

3.3 Water network 

There was no detailed national-scale geospatial water pipe network data available in this study, 

which showed connections from water supply networks to water distribution networks to 

customer demand location points at disaggregated spatial scales (either household/building 

locations or even some postcode level). The best available model was a water supply resource 

system model of England and Wales developed for a previous study37. The data from this model 

was modified and adopted for this study.  

 

The data included all major public water supply nodes (reservoirs, boreholes, transfers, water 

treatment works, pumped storage, desalination plants and river abstraction points) that were 

                                                 
35 https://www.nomisweb.co.uk/census/2011/workplace_population 
36 https://www.scotlandscensus.gov.uk/news/workplace-population-and-daytime-population-council-areas 
37 http://www.mariusdroughtproject.org/ 

https://www.nomisweb.co.uk/census/2011/workplace_population
https://www.scotlandscensus.gov.uk/news/workplace-population-and-daytime-population-council-areas
http://www.mariusdroughtproject.org/
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connected into England and Wales's wider water network via any river or transfer of 

significance (i.e. > 2Ml/d). This included more than 90% of England and Wales's population 

and water demand, and more than 80% of the combined land area. Some population and land 

areas were not accounted for because their either were not covered by the public water supply 

network or the water transfers in such areas were below 2Ml/d and were not considered 

significant for modelling. The nodes were connected with links representing rivers and pipes. 

The model included: pipe capacities, treatment works capacities, reservoir capacities, 

abstraction and operational licence conditions, operational preferences, control curves, system 

connectivity, and asset locations where necessary (e.g. for river abstractions or boreholes). 

 

3.3.1 Network topology 

For the purposes of this study we needed the network topology information from the water 

supply network model, with the assigned sources and sinks.  Figure 3-5 shows the network 

topology, with the identified source nodes (inflow points, abstraction, reservoir) and the sink 

nodes (demand). The inflow points show the locations on the rivers from which surface water 

is being extracted for water supply. Several of these points were not linked to the network in 

the original data and model but were created by us. In the end the water supply network 

topology consisted of 931 nodes and 700 links. The links in the network were all directed links 

representing the direction of flow to water. For example, we might have water flowing from 

an inflow point towards the reservoir and then towards a demand node. Hence in the network 

we had links directed from the inflow point towards the reservoir, and then from the reservoir 

towards a demand node.    

 

 
Figure 3-5: Topology of a national-scale water supply network for England and Wales. 

3.3.2 Demand allocation 

Demands in the water supply network model were allocated at 128 Water Resource Zones 

(WRZs) levels over England and Wales. All water companies do their planning at the WRZ 

levels, and estimate demands in terms of total residential populations within WRZs. We did 

the same by intersecting the LAD level residential census polygon with WRZ polygons and 

then aggregating the resulting customer demands to nodes within these WRZs. While most 

WRZ’s had only one demand node to which its population was allocated, some demand nodes 

extracted water from surrounding WRZs. These were identified and the population of their 
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allocated WRZs were also assigned to the nodes. Some big WRZs had more than one demand 

node and the Water Companies had indicated how the water was proportionally divided to 

demand nodes within such WRZs. The population within the WRZs were assumed to be 

divided into similar proportions to the demand nodes. Figure 3-6 shows the result of the 

customer demand allocation. As can be noted from the figure, the demand nodes are highly 

aggregated . For example, the whole demand around the London region is represented by one 

node to which about 8 million customers are assigned. 

 
Figure 3-6: Customer demands from WRZ’s allocated to demand nodes in the water supply network 

model. 

3.3.3 Failure estimation model 

Failures in the water network were estimated similar to the approach followed from the 

electricity network. These failures were estimated in terms of the numbers of customers at the 

demand nodes disrupted when some nodes were removed from the network. 

 

We mapped all the possible directed flow paths between all source (40) node and sink (80) 

node in the network, which in creating 520 unique source-sink paths. Since, the water network 

was a completely directed network, there were very few feasible source-sink paths. This might 

also imply low redundancy in the water network, but that is expected for such a high-level 

sparse network representation of the water system in the country.  

 

When a failure was initiated in the water network all the paths containing the failed nodes were 

considered disrupted and removed from the set of flow paths. If there were further nodes that 

lost all their flow connectivity due to the removal of the disrupted flow paths, then these were 

also considered to have failed due to complete loss of any flows through them. If any of the 

final set of disrupted nodes were demand nodes, then their allocated demands were summed 

up to estimate the disrupted customers. 
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3.4 Railway network      

The railways model created for this study relied on a previous vulnerability assessment of Great 

Britain’s railways38. This model has been used in several other peer-reviewed studies39,40 on 

infrastructure risk analysis. The model shows the railway network for Great Britain owned and 

operated by Network Rail.  

 

3.4.1 Network topology 

Data on the locations of all existing 2,564 railways station was first collected along with the 

geospatial information on the line geometries of different railway routes in Great Britain.  The 

line geometries showed the single-track routes, which were sufficient for this analysis. The 

underlying data gave very accurate geospatial information on the node and route locations, as 

verified by matching with satellite imagery. But this data set has not been updated since 2016, 

so new railway stations and routes were identified through open data sources, to plug the gaps 

in the existing data. 

 

The raw data had to be post-processed to be able to join the station nodes onto the line routes 

and add junctions where two lines intersected, which was done using a novel Python library, 

for network data cleaning and processing, we have developed and used in several previous 

projects41. The post-processed version resulted in a topologically connected network of 4,024 

nodes and 4,524 links.   

 

3.4.2 Demand allocation 

The demands on the railway network were estimated in terms of the numbers of passenger 

journeys over a typical 24-hour period on a weekday, which was similar to an average annual 

daily count. No freight flow or commercial travel allocation was considered, as there was no 

data available on such types of travel. While data on station-station journey counts does exist42, 

it is a proprietary dataset that was not available to us for this study. Instead we created a trip 

assignment model using openly available train timetable data and annual station-usage 

statistics. The train timetable data gave the codes for all station stops made by trains running 

in the country, which we translated into a spatial routing map based on the location of station 

and routes in our network. This results in creating 15,038 train flow paths across the whole rail 

network. From the timetable data we also estimated the numbers of trains on each day of a 

week over the whole year. The station-usage statistics gave the annual number of entries, exits 

and interchanges at all station in the country, which we mapped spatially onto our network. 

The annual station-usage numbers were converted into daily numbers by dividing by 52 weeks 

and then within the week by the numbers of trains on the day. The daily station entries and 

interchanges were then proportionally distributed along routes, weighted by the frequency of 

trains on each route and the numbers of exits and interchanges to all subsequent stops on the 

routes. For details of the model see Pant et al. 201638. Figure 3-7 shows the result of the railway 

                                                 
38 Pant, R. Hall, J.W. and Blainey, S.P. (2016). Vulnerability assessment framework for interdependent critical infrastructures: case study for 

Great Britain’s rail network. EJTIR, 16(1): 174-194, ISSN 1567-7141. 
39 Lamb, R., Garside, P., Pant, R., & Hall, J. W. (2019). A Probabilistic Model of the Economic Risk to Britain's Railway Network from 
Bridge Scour During Floods. Risk Analysis, 39(11), 2457-2478. 
40 Oughton, E. J., Ralph, D., Pant, R., Leverett, E., Copic, J., Thacker, S., ... & Hall, J. W. (2019). Stochastic Counterfactual Risk Analysis 

for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks. Risk Analysis, 39(9), 2012-
2031. 
41 https://github.com/tomalrussell/snkit 
42 https://orr.gov.uk/__data/assets/pdf_file/0014/26600/regional-rail-usage-odm-methodological-report-2017.pdf 

https://github.com/tomalrussell/snkit
https://orr.gov.uk/__data/assets/pdf_file/0014/26600/regional-rail-usage-odm-methodological-report-2017.pdf
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flow allocation model, where the highest flows are mostly concentrated around links coming 

and going out of London.    

 
Figure 3-7: Network representation of the Great Britain’s railways with the model estimates of numbers 

of daily passenger flows along nodes and links. 

3.4.3 Failure analysis   

The flow paths on the railway network were the routes indicated by the timetable data, as that 

is what the trains would be adhering to. From the trip assignment model, we knew the numbers 

of passenger journeys on each flow path. We assumed that when a node or link failed it would 

knock out the whole train journey, thereby disrupting the entire flow paths passengers. This is 

a worst-case assumption but is not quite unrealistic because in major real big failure events 

entire train journeys have been cancelled43,44. Hence, when one or more nodes or links were 

removed from the network, we estimated all the disrupted train journey paths and added up the 

numbers of passengers on these journey paths to get the total disruptions. 

 

 

 

 

 

 

 

 

                                                 
43 https://www.theguardian.com/uk-news/2020/feb/08/uk-rail-firms-reduce-services-as-storm-ciara-approaches 
44 https://www.lner.co.uk/travel-information/travelling-now/travel-alerts/storm-dennis/ 

 

https://www.theguardian.com/uk-news/2020/feb/08/uk-rail-firms-reduce-services-as-storm-ciara-approaches
https://www.lner.co.uk/travel-information/travelling-now/travel-alerts/storm-dennis/
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3.5 Road network 

The road network model for this study was derived from a long-term planning model developed 

in the ITRC project45,46. The network coverage was over Great Britain.  

  

3.5.1 Network topology 

The road network topology was derived from road traffic statistics data, using only the 

geospatial data provided for the major road network for Great Britain. This included all 

motorways, trunk roads, A roads, and some B roads. The network links do not show the actual 

geometry of the roads but gives straight line connections between junctions and roundabouts. 

The original data was post-processed to fill all gaps in connections between road links, and in 

some instances, this was done by also adding ferry links over waterways. The data also 

contained traffic statistics of vehicle counts by direction of travel on roads, which was merged 

with the spatial network topology. Hence, a distinction was made in the network topology as 

well to represent the direction of travel on roads, which resulted in creating two links between 

most node pairs. The final network topology consisted of 13,685 nodes representing junctions 

36,382 directed links with traffic counts. Another attribute added to the network was the 

identification of road links which had tunnels in them, because we were interested in mapping 

the electricity substations supplying power to these tunnels (discussed later). We used other 

open data sources to identify all major roads with tunnels and matched them to our road 

network for this study.    

 

3.5.2 Demand allocation 

While the traffic counts on roads already gave an indication of their usage, they did not give 

any information on the where the traffic was coming from and going. For the failure analysis 

we needed such information to create flow paths. Hence, the demands on the road network 

were estimated in terms of the numbers of passenger journeys over an average annual daily of 

traffic patterns in Great Britain. For this we used an Origin-Destination (OD) matrix derived 

from the National Trip End Model (NTEM) of the Trip End Model Presentation Program 

(TEMPRO). The NTEM provided an OD matrix of vehicle trips between 7,000 geographical 

area zones in Great Britain.  

 

The OD matrix was disaggregated to the network level by first finding the network nodes 

within each OD geographical area. Next the trips created in the origin zone were disaggregated 

to the road nodes in proportion to the traffic counts on the nodes. Similarly, the destination 

zones nodes were also given weights in proportion to traffic counts through them. This resulted 

in dividing each origin zones nodes trip flow to all destination nodes in proportion to their 

weights, resulting in a final node-node OD matrix. As an example, if an origin zone generating 

100 trips, had two origin nodes (𝑂1, 𝑂2) which attracted 60% and 40% of the traffic 

respectively, then 60 trips were assigned to one node and 40 to the other. Similarly, if the 100 

trips from origin was delivered to a destination zone with two nodes (𝐷1, 𝐷2) that attracted 70% 

and 30% traffic counts respectively, then 70 trips were delivered to one node and 30 to another. 

Overall in this example there are four OD pairs with assigned trips estimated as 
{𝑂1𝐷1 = 42 , 𝑂1𝐷2 = 18 , 𝑂2𝐷1 = 28 , 𝑂2𝐷2 = 12}.  

 

                                                 
45 https://www.itrc.org.uk/highlights/nismod-v2-transport-model/ 
46 Lovrić, M., Blainey, S., & Preston, J. (2017). A conceptual design for a national transport model with cross-sectoral 

interdependencies. Transportation Research Procedia, 27, 720-727. 

https://www.itrc.org.uk/highlights/nismod-v2-transport-model/
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Following this, the route comprising all links travelled between the 𝑂1𝐷1 pair was estimated, 

based on finding the least time route based on speeds on the roads. The whole 42 trips were 

assigned to the least time route. Similar calculations were done for the 𝑂1𝐷2 , 𝑂2𝐷1, 𝑂2𝐷2 pairs 

and their trips were assigning to each OD pair’s route. For the whole network more than 1 

million trip were created, several of which had very small numbers of trips on them. To reduce 

the set of possible OD trip routes only those routes were chosen that had in excess of 5 trips 

per day resulting in 182,528 unique trip routes being created, with each having an estimated 

count of trips. This was converted to passenger numbers by assuming an average occupancy 

factor of 1.6 across all types of vehicles47,48. Figure 3-8 shows the results of the flow allocation 

on the major road network of Great Britain, where flows are mostly concentrated around big 

urban conurbations. 

 
Figure 3-8: Network representation of the Great Britain’s major roads. 

   

3.5.3 Failure analysis   

The failure analysis algorithm for the roads was similar to the railways, where the flow paths 

were used to indicate the routes traffic will be adhering to. We assumed that when a node or 

link failed it would knock out the whole trip, thereby disrupting the entire flow paths 

passengers. Hence, when one or more nodes or links were removed from the network, we 

estimated all the disrupted OD trip paths and added up the numbers of passengers on these 

journey paths to get the total disruptions. We note that again this is a worst-case disruption 

analysis because the road network has several rerouting options which are used in realistic 

disruptions. But since the purpose of this analysis was to highlight large scale cascading 

failures, we chose to not account for trip rerouting in the model, though we could have done it. 

 

                                                 
47 https://www.statista.com/statistics/314719/average-car-and-van-occupancy-in-england/  
48 https://www.gov.uk/government/statistical-data-sets/nts09-vehicle-mileage-and-occupancy  

https://www.statista.com/statistics/314719/average-car-and-van-occupancy-in-england/
https://www.gov.uk/government/statistical-data-sets/nts09-vehicle-mileage-and-occupancy
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3.6 Mapping interdependencies 

Data on network interdependencies was extremely difficult to collect, because: (1) there is no 

existing practice or regulation that makes network operators share their data on links to other 

networks, in a similar way they would make some of their network data open-access; and (2) 

most network operators might not have information which goes beyond their own networks. 

Hence, most of these interdependencies are represented by creating notional links between 

network assets, as there is very little information on the actual physical connection assets 

(cables, pipes, etc.) between sectors. These links capture the physical (inter)dependencies 

between most networks and the cyber dependencies with respect to the digital communication 

(telecoms) network. 

 

In this study we assumed that electricity and telecoms were interdependent networks, by 

creating directed links from chosen electricity nodes (substations) towards telecoms nodes 

(exchanges and macro cells), and other sets to direct links from telecoms nodes to all electricity 

nodes. Water, rail and roads were considered to be dependent on either electricity or telecoms 

or both networks. In this study we were most interested in modelling instantaneous failure 

propagations and failure impacts of the order of a few days, not a few weeks. Hence, electricity 

and telecoms were considered to be the two sectors whose failures would have such short-term 

failure propagation effects. It was reasonable to exclude longer term dependencies e.g. the 

dependency of the electricity sector on water supply (in absence of storage) and transport for 

fuel. These assumptions were validated with sector experts during Quality Assurance (QA) 

consultations. 

 

In most cases the dependency links from one asset towards another were created by assuming 

connections based on proximity, i.e., between the nearest selected nodes of the two types of 

network. Elaborating on the digital communications sector, for all infrastructure assets which 

rely on digital communications, we assumed (for lack of better data) that all asset connections 

were routed into the local internet exchange (BT exchange points). This also included both 

macro and small cells being connected (‘backhauled’) via either fibre, copper or microwave 

into the nearest exchange. As well as other infrastructure assets (energy, transport etc.) also 

being connected into a local exchange, via a fibre, copper or microwave connection. We also 

assumed that each exchange either had an alternative provider operating within it, or did not, 

based on the cable availability. Unfortunately, we did not have data to determine whether an 

asset is directly linked into the Internet using a different route which bypasses the exchange. 

Hence, the aim of this approach was to capture the majority of instances to provide a 

generalised national understanding of (inter)dependencies with digital communications 

infrastructure. 

 

Table 3-1 explains all the dependent links created between assets of different networks. We 

acknowledge that several types of dependencies between systems were not accounted for with 

the data used for this study. For example, one of the limitations was the assumptions around 

the electricity (or water) network’s dependency on the limited numbers of telecoms exchanges 

and macro cells. We did not account for: (1) SCADA systems that would be used for controlling 

and monitoring operations and failures in networks, especially electricity; (2) several other 

private telecoms networks that other networks might be using; and (3) removal of telecoms to 

some nodes would not cause complete failures but might inhibit some activities. 
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Table 3-1: Dependency data and model assumptions taken in analysis 

Dependency edges Topological modelling 

assumptions  

Assumptions/limitations Data Privacy Issues 

Electricity-rail 

dependency 

• Data collected on 

electricity point assets 
along railways network 

• Electricity traction 

substations (nodes) 

connected to rail nodes 

with known information on 
route 

• Other electricity points 

connected to rail stations 

and rail tracks based on 

nearest proximity 

• Electricity traction 

substations connected to 

the rest of the electricity 
network as well  

• No capacity constraints on 

electricity supply to the 
assets 

• Data only shows limited 

assets and is not along all 

routes 

None - Because all underlying 
network data is derived from 

open-source resources and created 

by us. The dependency links are 
all synthetically modelled here.       

Electricity-water 
dependency 

• Water assets are assumed 

dependent on their nearest 

low voltage substation 

• No capacity constraints on 

electricity supply to the 
assets 

Electricity-telecoms 

dependency 

• Telecom assets are 

assumed dependent on their 

nearest low voltage 

substation 

Electricity-road 

dependency 

• Road tunnels assumed 

dependent on their nearest 

low voltage substation 

Telecoms-rail 

dependency 

• Data on telecom masts 

along existing rail network 

• Telecoms masts (nodes) 

connected to nearest rail 

nodes based on proximity 

• Not linked to the rest of the 

fixed telecom exchanges as 

they are independently 
owned and operated by 

network rail 

• Data only shows limited 

assets and is not along all 

routes 

Telecoms-electricity 
dependency 

• Electricity nodes assumed 

dependent upon their 

nearest macro cells and 
exchanges   

• No actual data to inform this 

dependency 

Telecoms-water 
dependency 

• Water assets connected to 

their nearest exchanges and 
macro cells  

• No actual data to inform this 

dependency 

 

We had some detailed information on the locations and types of rail assets that use other 

utilities, especially electricity. This was an older dataset, that we had created for a previous 

study12, which gave the locations of roughly 9,100 of the following assets: (1) Electrification 

Switching – Operational; (2) Electrification Substation – Domestic; (3) Electrical Control 

Room; (4) Remote Monitoring – Critical; (5) NDS National Delivery Service; (6) Telecoms – 

Domestics; (7) Lighting - Bridge/Navigation; (8) Telecoms – Operational; (9) Signalling/Relay 

Room – Domestics; (10) Pumps; (11) Lighting - Tunnels/Junction; (12) Lighting – Walkway; 

(13) Electrification Substation – Operational; (14) Lighting - Yards/Miscellaneous; (15) 

Signalling/Relay Room – Operational; (16) NR Office Accommodation; (17) Signalling 

Supply Point – Domestic; (18) Rail traction GSP; (19) Signalling Supply Point – Operational; 

(20) Signal Box – Power; (21) Signalling Centre/IECC/Route Control; (22) GSM-

R/FTN/RETB/CSR/NRN; (23) Level Crossing – CCTV; (24) Electrification Switching – 

Domestic; (25) Points Heating; (26) Level Crossing – Other; (27) MDU - 

Accommodation/Storage. While most of these point assets would be providing service to the 

nearest railway link to them, some of these are used for entire routes sections covering several 

links. For example, each traction substation would supply electricity to a whole route spanning 

several stations, and similarly Signalling Centre/IECC/Route Control would be controlling 
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several kilometres of train routes.  Such considerations were made in collection information 

and mapping the influence of each of these point assets on the railway network with 

dependency edges created from them to several nodes/links where appropriate.  All these point 

assets (nodes) were then assumed dependent upon the electricity network and were connected 

to their nearest substation of the right voltage.   

 

From the same data source, the information on rail nodes dependent upon telecoms towers 

along the rail routes was used, but these telecoms towers were not linked to the rest of the 

telecoms network. 

 

Since the dependencies by proximity mapping were being inferred, they were approximate and 

it has to be recognised that if the supply point was not correctly identified then the dependent 

assets might be connected to a network at the incorrect locations, which is very likely to 

happen. 

 

Translating the above described assumptions into results the numbers of dependent links 

between network created in the three versions of connectivity mapping we have assumed for 

this study, are shown in Table 3-2. These are the numbers of links created after removing 

unwanted connections between nodes that were greater than 10km. The analysis showed that 

that in 97.5% of the instances the degrees of connections of the nodes increased from 1 to 2, 

and in further 94.4% of the instances the degrees of connections of the nodes increased from 2 

to 3. Which means that in very few instances the distance truncation criteria prevented from 

adding unwanted redundancies to the network. 

 
Table 3-2: Versions of degrees of connections and the numbers of network links created in the data.  

Connections mapping type Number of links 

Single connections 103,624 

Two connections 187,457 

Three connections 268,766 

 

 

3.7 Accounting for backup supply 

Backup supply signifies the time for which the asset was not disrupted because it has alternative 

supply for the similar service. Based on discussions with the NIC and sector experts only a 

small set of assets were assumed to have backup supply for only electricity. No telecoms 

backup was considered in this study. Table 3-3 shows that the efficacy of the electricity backup 

supply considered for each sector was interpreted in terms of the duration in hours over which 

the backup would be able to completely substitute for lost electricity supply. These values were 

tested with sector experts while doing the QA consultation of the underlying data and 

assumptions.  

 
Table 3-3: Assumed electricity backup supply duration put in place for different types of dependent 

assets.  

Sector Node type Assumed Backup supply of 

Electricity (hours) 

Electricity    All 0 

Telecoms Exchange  24 

Telecoms Macro cell 2 

Water All 72 

Road Road tunnel 24 

Rail All 0 
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Given that the actual duration of the backup supply at each asset was uncertain and not all 

assets of the same type would have the same duration of backup supply, we considered a 

probabilistic distribution for the duration of backup supply. This was based on the following 

assumptions: (1) Backups survived as per a gamma distribution, which is a very well-known 

distribution used to model infrastructure reliability for maintenance49; and (2) The backup 

duration for an asset was estimated as the product of this assumed duration (from Table 3-3) 

and a gamma survival function with value between 0 and 1). This meant that the backup would 

last anywhere between 0 hours and the assumed duration it was assigned.  

 

3.8 Future network changes 

The following drivers of the future scenarios were considered in the study: 

• Specific NIA scenarios – which would affect particular sector networks and their 

interdependencies. 

• Spatially disaggregated population changes – which would affect the customer demands 

for all sectors.  

• Spatially disaggregated Gross Value Added (GVA) changes – which would affect the 

service demands in some sectors. 

• Macro-level GDP growth forecast – which would affect the economic losses due to 

disruptions. 

 

3.8.1 NIA future energy scenarios and changes to the electricity network 

The two main NIA future scenarios implemented in this study, explained in Table 2-1, resulted 

in changes to the supply and demand on the electricity networks for the future. The supply side 

changes meant adding and removing source nodes in the network, while the demand side 

changes meant adding more MW loads to the demand nodes. 

 

The energy scenario data from this study was created by Aurora Energy Research50 previously 

for the NIC, giving aggregated national-scale supply and demand estimates under the future 

70% renewable generation scenarios with high (Elec70) and low (Hydro70) electricity heating 

demands. We had to disaggregate the values to the network level. 

   

3.8.1.1 Supply side changes to the electricity network 

First, we looked that the different energy generation technologies in our data and mapped them 

to the Aurora data of generation mixes, because there was a difference in the names and types 

of the technologies in the two datasets. Next, we compared the numbers of the current 

generation capacities in GW in our network, with the future projected numbers in the Aurora 

scenarios. Based on the numbers we decided whether to scale up or scale down the current 

capacities of all nodes of a particular technology in proportion to their current weighted 

capacities across the whole network. In some instances, we had specific data at the node levels 

indicated whether we needed to add or remove nodes. Table 3-4 shows the details of the 

different generation technologies in our network and the comparison with the future Aurora 

technological changes in the energy generation mix for the electricity network. The 

implications for the network due to the changing energy mix as also shown in the table. 

                                                 
49 van Noortwijk, J. M. (2009). A survey of the application of gamma processes in maintenance. Reliability Engineering & System 

Safety, 94(1), 2-21. 
50 https://www.auroraer.com  

https://www.auroraer.com/
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Table 3-4: Comparison of the generation capacities in the current electricity network with the future 

modelled generation mix and capacities as modelled by the Aurora Energy model. Also shown are the 

network changes that will result due to future generation mix changes. 

Generation 

capacity (GW) in 

existing network– 

2017 

Energy types in 

our data 
Aurora energy types 

Aurora generation 

mix (GW) 

Scale 

up/down 

capacity of 

current 

nodes  

Hydro 70 Elec 70  

4.08 Bio related 
Biomass 6 6 Scale up 

Biomass with CCS 0 0 - 

36.19 Gas 

CCGT 5.14 24.57 
Scale 

up/down 

OCGT 0.97 0.97 
Scale 

up/down 

Gas recips 17.56 28.36 
Scale 

up/down 

16.69 Oil diesel coal 

Coal 0.01 0.01 Scale down  

Diesel recips 1.01 1.01 Scale down 

Internal combustion 

engines 
0.13 0.13 Scale down 

9.29 Nuclear Nuclear 11.8 8.22 
Remove + 

Add new 

4.52 Hydro related 
Pumped Storage 2.81 2.81 scale up 

Hydro 1.87 1.87 scale up 

8.10 Solar Solar 75.5 71.37 
Add new and 

scale up 

6.32 Wind offshore Offshore wind 29.3 49.29 
Add new and 

scale up 

13.51 Wind onshore Onshore wind 24.27 25.43 
Add new and 

scale up 

5.00 Interconnectors Interconnectors 17.9 17.9 Add new 

0.41 Waste     

0.05 Ocean related     

  Batteries 12.61 18.05 Add new 
  CCS 4.53  Ignore 
  DSR 7.43  Ignore 

104.16 Total Total 218.84 255.99  

 

Adding interconnectors 

Specific information on locations of future interconnectors was available for the Aurora data 

and other sources51 was collated and translated into adding nodes and connecting them at 

specific locations of the existing network. It was assumed that all interconnectors were to 

connect to existing substation in the National Grid (NGET) transmission networks. While in 

reality there might be new substations being built for new interconnectors, we did not have 

detailed data of planned substation and new connections. The aim here was to approximate to 

the nearest location where the interconnectors would connect to the existing grid. These 

changes applied to both future energy mixes. 

 

 

 

 

 

                                                 
51 https://www.4coffshore.com/transmission/interconnectors.aspx  

https://www.4coffshore.com/transmission/interconnectors.aspx
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Table 3-5: Description of planned interconnectors and their connections into the Great Britain’s 

electricity network of 2050.  

Project Capacity 

(GW) 

Country link NGET link 

ElecLink  1.0 France – Peuplingues HVDC converter station at Folkestone + 

Sellindge 400kV substation 

NEMO 1.0 Belgium – 

Herdersbrug/Gezelle 

HVDC Richborough converter station + 

Richborough 400kV substation 

Viking Link 1.4 Denmark – Revsing HVDC North Ing Drove, Bicker Fen converter 

stations + Bicker Fen 400 kV substation 

IFA 2  1.0 France – Tourbe  HVDC Daedalus converter station +Chilling 

400kV substation 

FAB 1.4 France – Manuel HVDC Long Lane converter station + 

Broadclyst 400kV substation 

Gridlink 1.4 France – 

Dunkerque/Bourbourg 

Kingsnorth 400kV substation 

Aquind 2.0 France – Barnabos Lovedean 400kV substation 

Neuconnect 1.4 Germany – Conneforde Greystones 400kV substation 

Greenlink 0.5 Ireland – Great Island HVDC Pembroke converter station + Pembroke 

400kV substation 

NSL 1.4 Norway – Kvilldal HVDC East Sleekburn (Blyth) converter + Blyth 

400kV substation 

NorthConnect 1.4 Norway – Simadalen/Sima  HVDC Fourfields, Boddam, Peterhead 

converter stations + Peterhead 400kV substation  

 

Adding and removing nuclear sites 

The Aurora scenarios gave specific information on decommissioning some nuclear power 

plants, based on the future energy planning by the UK government. Also, there are plans to 

build a new Hinkley Point C power plant with 3.34 GW capacity in the future52,53. After 

consultation with the NIC we decided to remove some of the existing nuclear power plants 

from the future networks, and replace Hinkley Point B with Hinkley Point C while retaining 

Sizewell B and at least some plants of same capacity as the new Hinkley Point C. Unfortunately 

adding Hinkley Point C as a new node was not possible because we did not have specific 

geospatial information about its location and connections to the existing electricity network. 

The best assumption to make was that Hinkley Point C would be made close to the existing 

Hinkley Point B. 

 

Table 3-6 shows all the changes made to the future energy mix by removing nodes and 

upgrading the capacities of existing nodes to match the forecasted capacities of the Aurora/NIC 

scenarios. 

 
Table 3-6: Network changes made to the nuclear power mix in the future network scenarios.  

Plant Changes made 
Capacity (GW) 

Hydro70 Elec70 

Dungeness B Remove - - 

Hartlepool  Remove - - 

Heysham I Upgrade capacity 2.7 1.55 

Heysham II Upgrade capacity 2.94 1.68 

Hinkley Point B Replace as Hinkley Point C  3.34 3.34 

Torness Remove - - 

Hunterston B Remove - - 

Sizewell B Upgrade capacity 2.82 1.62 

  

                                                 
52 https://www.edfenergy.com/energy/nuclear-new-build-projects/hinkley-point-c 
53 https://www.gov.uk/government/collections/hinkley-point-c 
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Adding renewables  

The more significant change in the future energy mix was in terms of adding more renewables 

and embedded generation nodes to the existing network. This included adding new nodes of 

batteries, onshore and offshore wind, and solar sites. 

 

Data from the Renewable Energy Planning Database (REPD)54 quarterly extract, updated till 

September 2019, gave the locations, and capacities of planned renewable technologies that 

were under different stages of development including currently operational, under 

construction, awaiting construction and application approved, application submitted. We 

extracted this dataset and mapped out all the new nodes with their capacities to add to the 

existing network. 

 

Figure 3-9 shows the locations of the existing sites (in orange) and new additional sites in the 

future (in green) selected from the REPD database, for inclusion to the electricity networks in 

the future scenarios. Once these sites were selected they were connected to their nearest HV 

distribution substation/transformer node (33kV to 132kV) with a step-down transformer (< 

132kV) leading to the LV networks, as generally that is the level at which embedded generation 

technologies would mostly connect to the electricity networks55.   

 

We note that the assembled data did not show as high total cumulative capacities as forecasted 

in the future Aurora/NIC model energy mix scenarios. Hence, we scaled up all the capacities 

of the nodes of each technology to match the cumulative Aurora/NIC estimates for that 

technology in 2050.   

 
(a) Solar 

 
(b) Battery 

                                                 
54 https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract 
55 

https://www.energynetworks.org/assets/files/electricity/engineering/distributed%20generation/DG%20Connection%20Guides/July%202014

/G59%20Full%20June%202014%20v3_Updated.pdf  

https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract
https://www.energynetworks.org/assets/files/electricity/engineering/distributed%20generation/DG%20Connection%20Guides/July%202014/G59%20Full%20June%202014%20v3_Updated.pdf
https://www.energynetworks.org/assets/files/electricity/engineering/distributed%20generation/DG%20Connection%20Guides/July%202014/G59%20Full%20June%202014%20v3_Updated.pdf
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(c) Wind Onshore 

 
(d) Wind Offshore 

Figure 3-9: Map representations showing the locations of existing (in orange) and future (in green) 

generation sites for (a) Solar; (b) battery; (c) wind onshore; and (d) wind offshore. Note that the sites in 

Northern Ireland are ignored.  

Scaling up and down other technologies  

Significant changes will be made in the electricity networks of the future in terms of 

decommissioning coal, gas and diesel oil technologies. The big difference between the two 

Aurora/NIC scenarios is the reduction of gas in one (Hydro 70) compared to the increase in 

gas in the other (Elec 70). Under both scenarios, usage of diesel oil and coal significantly 

reduces in the future. Hence the approach should have been to remove most of the nodes these 

technologies in both scenarios and add some more gas nodes in the Elec 70 scenario. 

Unfortunately, we did not have any data or expert feedback on how to do this. The next best 

option was to scale up and down existing nodes in the network to match future cumulative 

capacity projections for these technologies. A similar approach was followed for the nodes 

using biomass. 

      

3.8.1.2 Demand side changes to the electricity network 

The two future Aurora/NIC scenarios differed significantly in terms of the energy demands in 

TWh being placed on the electricity networks, with the main difference being the demands due 

to heating. Table 3-7 shows the estimated cumulative energy demands on the electricity 

network for the two scenarios, with the third column highlighting the difference is mainly due 

to use of electricity heating. We also note that there are significant demands in the future due 

to electric vehicles (EVs). 

 
Table 3-7: Electricity energy demands estimated in the future Aurora/NIC scenarios. 

Scenario Annual base 

electricity demand 

net of heat and 

transport (TWh) 

Annual electricity 

demand from heat 

(TWh) 

Annual electricity 

demand from EVs 

(TWh) 

Total annual 

electricity demand 

(TWh) 

Hydro 70 357 17.7 91.07 465.4 

Elec 70 357 148.4 91.07 596.4 
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Translating these demands onto the networks required several assumptions as the Aurora/NIC 

estimates only gave single cumulative estimates at the national scale. The following 

assumptions were made: 

Estimating electricity and heat loads  

1. All demand nodes in the future networks were the same as the current network sink 

(demand) nodes. Due to lack of any data on where new substations would be built, we were 

not able to add further demand nodes, but rather scale up or down future demands at 

existing nodes. 

2. From the ITRC long-term energy model26 we obtained hourly energy demand estimates  as 

MW loads at the LAD level over the whole year. We added these up to get the annual 

energy usage in TWh and accordingly scaled up or down the numbers to match the 

Aurora/NIC scenario estimates. Subsequently, the hourly MW loads changed by the same 

scaling factor. 

Estimating EV loads    

3. Since EV loads on the electricity network originated from transport, we used the spatial 

transport OD matrix in the future for estimating EV demands. 

4. The ITRC long-term transport model46 gave a future EV demand that translated trips 

generated into EV demands, which were aggregated from the NTEM zones to the LAD 

administrative levels. These demands gave the daily energy usage in TWh from EV. 

5. Assuming that the EV usage was uniform for the whole year the daily usage was multiplied 

by 365 to convert to annual usage, as scaled up or down to match the Aurora/NIC scenario 

estimates. 

6. The Aurora/NIC scenarios for EV demands also gave an half-hourly electricity charging 

profile, which was converted to an hourly profile. The daily/annual EV energy usage was 

converted to hourly MW load based on this charging profile.  

Estimating total network loads 

7. From Steps 2-6 we were able to get LAD level hourly load profiles of total electricity 

demands from electricity plus heating plus EV usage.  We were interested in the peak load 

on the whole electricity network, which we extracted as the maximum hourly load over the 

whole year. This gave us the LAD level electricity demands to be assigned to the network 

nodes. 

8. From the LAD levels the energy loads were downscaled to the LSOA and then aggregated 

at the demand nodes, as described in Section 3.1.2. 

         

3.8.2 Changes to network topologies 

From the previous section it is clear that the electricity network topology would change in the 

future, mainly by adding more energy source nodes. In reality all other networks would also 

witness similar changes. But unfortunately, we did not have any data on other networks so we 

assumed that there would be no change in their topologies.  

 

Figure 3-10 shows the changes made to the electricity network topology in the future (in red), 

by adding more links to the current network (in green). Table 3-8 shows the details of the 

estimated network topologies, demand loads and supply capacities in the current and future 

scenarios. 
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Figure 3-10: Map representation showing the current network topology (in green) and future added links 

(in red) in the future scenarios for the electricity network of Great Britain. 

Table 3-8: Comparison between the current and future electricity networks properties modelled in this 

study.  

Scenario Topology 
Demand Generation 

capacity Electricity Heat EV Total 

Current 
Nodes – 18,062 

Links – 13,254 
55 GW 0 0 55 GW 104 GW 

Hydro70 Nodes – 18,801 

Links – 13,993 

56GW 9.1GW 4.9GW 70GW 207 GW 

Elec70 56GW 75GW 4.9GW 136 GW 260 GW 

 

The overall changes in the electricity network topology result in also creating addition 

dependency links with the telecoms network assets. Hence, additional links from the telecoms 

exchanges and macro cells towards the new electricity sources are added to the interdependent 

network topology. 

 
Table 3-9: Versions of degrees of interdependencies and the numbers of network links created in the data 

in the current and future network configurations.  

Interdependency mapping type Current networks - Number of 

links 

Future networks - Number of 

links 

One interdependency 103,624 104,998 

Two interdependencies 187,457 109,161 

Three interdependencies 268,766 272,731 

 

3.8.3 Changes in customer demands across all networks 

All sectors were allocated new demands in 2050 based on population projections at the Local 

Authority District (LAD) level (380 areas), which were downscaled to thee sector specific 

admin levels and the service output areas. The future population projections were based on the 

NIA scenario of high fertility (or high growth) which included the following assumptions: 

• England - ONS 2014-based high fertility subnational experimental projection. 

• Scotland - Scotland Stats 2014-based high fertility subnational projection.  

• Wales - Calculated based on ONS 2014-based high fertility national projection. 
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Figure 3-11 shows map visualisations of the LAD level population estimates from the current 

2017 levels and the NIA high growth scenario for 2050 selected for this the study. The figure 

also shows the annual population growth rate in percentages for each LAD, which show -0.5% 

to +1.6% growth changes across LADs with some of the highest positive growth rates 

concentrated around London and the South East.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-11: NIA high growth scenario-based LAD level population estimates of Great Britain showing 

(a) Current 2017; (b) Future 2050; and (c) Annual growth rate (%) between future and current 

populations. 

GVA data was also considered at the Local Authority District (LAD) level for estimating the 

future demands, especially for reworking the electricity demand profiles and rail and road OD 

matrices in the future. GVA data taken from the Office of National Statistics (ONS), included. 

• Current ONS estimates of GVA in 201756. 

• Future GVA growth scenario projections for 2050 derived by Cambridge Econometrics57 

and used for a previous study for the NIC58. 
 

We note that the GVA values might take some infrastructure failures into account, as they 

estimate the total output of goods and services less the value of goods and services used in the 

production process56. This means that if the production would have gone down in 2017 due to 

economic failures then the ONS GVA estimates would reflect that. But as far as we are aware, 

there are no significant observed or projected infrastructure failures in the GVA estimates. 

These estimates are just being used to project future transport demand based on a simple GVA 

elasticity. Though there are many assumptions in the economic estimates and transport 

projections, we do not believe the possible misrepresentation of infrastructure failure in the 

GVA data is a significant concern. Here we are only using the proportional change in GVA for 

understanding how the service demands of some sectors might change in the future (see Section 

3.8.3.4 and 3.8.3.5), and not in the failure calculations. 

    

Figure 3-12 shows map visualisations of the LAD level GVA estimates from the current 2017 

levels and the ONS projections for 2050 selected for this the study. The figure also shows the 

                                                 
56 

https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/regionalandsubregionalproductivityintheuk/

february2019  
57 https://www.camecon.com/how/lefm-model/  
58 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/601163/Economic-analysis-Cambridge-

Econometrics-SQW-report-for-NIC.PDF  

https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/regionalandsubregionalproductivityintheuk/february2019
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/labourproductivity/articles/regionalandsubregionalproductivityintheuk/february2019
https://www.camecon.com/how/lefm-model/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/601163/Economic-analysis-Cambridge-Econometrics-SQW-report-for-NIC.PDF
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/601163/Economic-analysis-Cambridge-Econometrics-SQW-report-for-NIC.PDF
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annual GVA growth rate in percentages for each LAD, which show +0.8% to +1.7% growth 

changes across LADs with some of the highest positive growth rates concentrated around 

London, East of England and the North West of England. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-12: ONS scenario-based LAD level GVA estimates of Great Britain showing: (a) Current 2017; 

(b) Future 2050; and (c) Annual growth rate (%) between future and current GVA levels. 

Below we discuss the assumptions being made in estimating the customer demands for each 

sector in 2050. 

 

3.8.3.1 Electricity demand changes 

We assumed that the assigned populations to the electricity sink nodes were expected to 

roughly change in the same proportions as the changes in LAD populations. Hence the 2050 

projected population estimates were taken and disaggregated to the LSOA level before 

aggregating LSOA populations to the sink nodes. We did not have any LSOA future 

projections of building footprints, so we assumed that the current building footprint areas 

(weights) would be the same in the future. Hence, the future LAD population estimates were 

disaggregated the LSOA levels in the same proportion as the present. Changes in GVA were 

assumed to have no effect on the changing customer demands for the electricity assets. 

 

3.8.3.2 Telecoms demand changes 

Similar in concept to the electricity, we assumed that the assigned populations to the exchanges 

and macro cells in 2050 were disaggregated from the 2050 LAD population estimates. Here 

we took the LAD estimates and disaggregated them to the postcode levels and then intersected 

the post code population densities with the services areas of the exchanges and the macro cells. 

Again, we did not have any post code level address point number for the future, we assumed 

that the current post code address point numbers (weights) would be the same in the future. So, 

the future LAD numbers were distributed to the post code level in the same proportion as the 

present. Changes in GVA were assumed to have no effect on the changing customer demand 

for the telecoms assets. 
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3.8.3.3 Water demand changes 

Estimating future customer demands was more straightforward. The future 2050 LAD level 

populations numbers were distributed to the 128 WRZ levels by spatially intersecting the two 

areas and summing up over the product of the population density and common areas of 

intersection.  

 

3.8.3.4 Roads demand changes 

Future road network flows we estimated by changing the OD matrix estimates. For each NTEM 

OD zone, future OD flows were derived based on the equation 1 below, derived from a long-

term transport planning model study46: 

𝑂𝐷𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑂𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (
𝑃𝑜𝑝𝑓𝑢𝑡𝑢𝑟𝑒

𝑃𝑜𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) (

𝐺𝑉𝐴𝑓𝑢𝑡𝑢𝑟𝑒

𝐺𝑉𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡
)

0.63

        (1) 

 

Here the populations and the GVA estimates for each NTEM zones were across all the LAD’s 

polygons intersecting that zone. Following the estimation of a future OD matrix the trip 

allocation was based on assuming the same traffic volume weights at the road nodes as the 

current levels, since there was no data on future traffic statistics. The future road speeds were 

assumed to be the same as the current and the allocation was again based on the least cost 

(time) path choice. 

 

3.8.3.5 Railways demand changes  

Railways OD flows were derived from the station usage statistics and the train timetables. 

Unfortunately, there were no data sources to incorporate timetable changes, hence they were 

assumed unchanged. The station usage was assumed to change in a similar manner as the road 

OD matrix as shown in equation 246. 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑈𝑠𝑎𝑔𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑈𝑠𝑎𝑔𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (
𝑃𝑜𝑝𝑓𝑢𝑡𝑢𝑟𝑒

𝑃𝑜𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) (

𝐺𝑉𝐴𝑓𝑢𝑡𝑢𝑟𝑒

𝐺𝑉𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡
)

0.63

        (2) 

 

Here the population and GVA estimates of the LAD area that contained the station were used. 

The allocation of passenger flows on the network were done with the existing timetable patterns 

of travel. 

 

3.9 Implications of future change on failure analysis 

Due to the changes in network topology and increased demands in the future there would be 

some expected changes in the failure outcomes of the networks. This difference would be 

driven by the changes in mapped source-sink flow paths in the future. For example, we would 

expect that adding more sources in the electricity network would create several more source-

sink paths adding more redundancies in several cases. Table 3-10 summarises the differences 

in flow paths between current and future networks and their implications on the failure analysis 

results. 
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Table 3-10: Flow paths for each network in the current and future scenarios and their implication on the 

failure outcomes. 

Sector Current Future Expected Failure implications 

Electricity 1,002,837 1,319,935 Increased source-sink paths would add redundancies and reduce 

some failure outcomes. Mostly disruptions could increase due to 

increased population and hence demands in the future   

Telecoms 97,992 97,992 No change in failure propagation. Disruptions could increase due to 

increased population and hence demands in the future Water 520 520 

Railways 15,038 15,038 

Road 182,528 207,793 Most nodes could have more future flow paths and flows through 

them increasing their failure impacts 

 

3.10 Economic loss estimations 

3.10.1 Input-Output model and data 

For this study, a Leontief Input-Output (IO)59,60 macroeconomic model based on empirical data 

is used to represent economic losses at the UK-scale (which includes Northern Ireland). 

Leontief IO model is a very well recognised model in macroeconomics literature61, with 

Wassily Leontief being awarded the Nobel Prize in 1973 for IO modelling. The Leontief IO 

model captures macroeconomic interdependencies across industry sectors at an aggregated 

region-scale (provincial, national, international), and the most important insight the model 

provides is to show how individual or groups of sectors influence the rest of the economy60,61. 

The model is very popular because it is supported by empirical data globally, with several 

countries maintaining and releasing IO accounts62,63, making the model useful in practice 

globally64,65. In the UK annual Input-Output tables are generated by the Office of National 

Statistics66,67. While the Leontief IO data and model was originally meant for studying 

macroeconomic growth modelling and structural planning, it has now been extensively used in 

disaster impact assessment with different extensions and variations to the original model68,69.    

 

The classical Leontief IO model, which we have used for this study, is based on following 

guiding principles70,71: (1) The macroeconomic system is in equilibrium where each industry 

sector produces a single homogenous output that is either absorbed by itself and other industries 

in the economy in further production of their outputs or used for final consumption; (2) The 

output produced by a sector is used in a fixed proportion by another sector in producing its 

                                                 
59 Leontief, W. (Ed.). (1986). Input-output economics. Oxford University Press. 
60 Leontief, W. (1987). Input-output analysis. The new palgrave. A dictionary of economics, 2(1), 860-64. 
61 Miller, R. E., & Blair, P. D. (2009). Input-output analysis: foundations and extensions. Cambridge university press. 
62 https://www.bea.gov/industry/input-output-accounts-data 
63 http://www.oecd.org/sti/ind/input-outputtables.htm 
64 Yamano, N. (2016). OECD Inter-Country Input–Output Model and Policy Implications. In Uncovering value added in trade: New 

approaches to analyzing global value chains (pp. 47-59). 
65 Ghosh, P. P., Ghose, A., & Chakraborty, D. (2011). A critical review of the literature on integrated macroeconometric & input-output 
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outputs. This means that the production technologies are fixed and there is no substitution in 

the economy; (3) The changes in the economy are driven by changes in the final consumptions 

(exogenous demands) to which the supply side responds by changing it production to create a 

new equilibrium in the economic system. This means that there are no supply side constraints 

in the model; (4) There are no price effects when the economic equilibrium shift and 

employment is maintained with infinite elasticity in labour supply.            

 

It goes without saying that the classical demand-side Leontief IO model has been critiqued in 

literature for its overtly simplified representation of a linear non-substitutable economic system 

with no price and labour effects70,71. Over the years several advances have been made to 

overcome limitations of the IO data, with the main approach now being to create Social 

Accounting Matrices (SAMs) that provide supply and use tables linking multiple industries to 

multiple commodities from with the IO accounts are created72. Specifically, for disaster impact 

modelling, several hybrid approaches that build from the Leontief IO model have been 

proposed to account for supply side disruptions73, substitution effects across industries and 

regions74, and changing production functions with inventory management during disasters75. 

Other approaches of computational general equilibrium (CGE) modelling that also use SAMs 

have been extensively used for disaster impact modelling, with such models using non-linear 

product functions with price effects and labour elasticity70. While there have been extensive 

comparisons and critiques of IO and CGE models in literature, it should be noted that all of 

them only model one out of several possible outcomes of economic disruptions and each model 

outcome has its limitations76.             

  

The attraction of using the simplified IO model for study is simply based on the ease of data 

availability, whereas other hybrid IO and CGE models would require data that was beyond our 

scope. We look at these disruptive effects in the very short-term (over a day), where we can 

relax assumptions of changing prices and have a fixed technology for sectors. But on the other 

hand, over such short timelines of disruptions sectors would be able to substitute for lost 

production and the economy would most probably not adjust to a new equilibrium, which 

would be more realistic of the durations of disruption lasted several weeks or months.  

 

The main insight from the IO model we want to get here is to understand the amplification of 

interdependent (indirect) losses on the rest of the economy produced by infrastructure sector 

customer disruptions (direct losses). The ability of IO models to quantify the direct and indirect 

economic losses, has been one of the main reasons why they are extensively used in economic 

impact assessments77. The magnitudes of economic losses here would represent close to worst-

case impacts under the assumption of losing a day’s worth of economic demand, as the IO 

model used here is known of give an overestimation of impacts78. 

    

We now explain the formulation of the IO model. As per the Leontief IO model, in a 

macroeconomic system comprised of n industry sectors the output produced by sector i, 𝑥𝑖, is 
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75 Hallegatte, S. (2014). Modeling the role of inventories and heterogeneity in the assessment of the economic costs of natural disasters. Risk 
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used to satisfy the intermediary demands from the rest of the economic sectors ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗  and 

exogenous demands 𝑓𝑖. The Leontief coefficient 𝑎𝑖𝑗 < 1 is based on the assumption of a linear 

production function where every 1 unit of output from sector j, 𝑥𝑗, requires 𝑎𝑖𝑗 units of input 

from sector i. The Leontief IO model of the whole balanced economy is represented as: 

Output (x) = Intermediate industry demand (Ax) + Final exogenous demand(f)     (3) 

 

Where x is a vector of n sector outputs, A = the 𝑛 × 𝑛 Leontief coefficient matrix, which 

captures inter-industry sector linkages, and f is a vector of n sector exogenous demands. A 

Leontief IO model represents an economy in equilibrium, which means that there is a unique 

solution to Equation (3) obtained as following: 

x = Ax + f   [I-A]x=f  x = [I-A]-1f       (4) 

 

Furthermore, the exogenous demands can be further split as following: 

f = Household demand (h) + Government demand(g) + Exports (e)       (5) 

 

Rewriting f in terms of its components gives 

x = [I-A]-1(h + g + e)      (6) 

 

Equation (6) shows that output (x) is driven by demands, and the Leontief Inverse Matrix (L = 

[I-A]-1) shows the economic multipliers will magnify the effects of demand driven 

perturbations. We use this simplified demand-driven model and concept to estimate economic 

losses. 

 

Assuming the IO structure of the UK economy does not change (i.e. the A matrix is 

unchanged), we assume due to infrastructure failures the household demands are affected (due 

to residential customer disruptions) and some industry demands are reduced to a new level 

𝐡𝑙 < 𝐡. So, simply the economy reacts by shifting to a new equilibrium  

xl = [I-A]-1(hl + g + e)      (7) 

 

Consequently, the direct economic losses are = h – hl, and the total economic losses (direct + 

indirect) are = x – xl. 

 

For this study, we have used the UK 2015 IO tables79, which show the balanced accounting of 

annual supply and demand between 129 macroeconomic private and government industry 

sectors, households, imports, exports. See Appendix B for the detailed list of 129 sectors 

included in the IO data for UK. 

 

To translate infrastructure disruptions into economic losses we first matched the infrastructure 

networks to their represented economic sectors in the IO accounts table, as shown in Table 

3-11. 

 
Table 3-11: Mapping of infrastructure networks to the economic sectors in the IO economic structures.  

Infrastructure 

network 

Economic sector 

Telecoms 61 - Telecommunications services 

Electricity 35.1 - Electricity, transmission and distribution 

Water 36 - Natural water; water treatment and supply services 

Roads 49.3-5 - Land transport services and transport services via pipelines, excluding rail transport 

                                                 
79 https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/datasets/ukinputoutputanalyticaltablesdetailed 

https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/datasets/ukinputoutputanalyticaltablesdetailed
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Rail 49.1-2 - Rail transport services 

 

We assumed that household demand losses for a specific sector (s) were proportional to the 

fraction of numbers of total residential users disrupted due to infrastructure failures. Hence, for 

electricity, telecoms and water this meant:  

hs
l = (numbers of population counts disrupted/total UK population)×hs     (8) 

 

For road and rail the estimation was based on proportional disruptions of passenger trips: 

hs
l = (number of daily trips disrupted /total daily trips considered)×hs         (9) 

 
3.10.2 Estimating future Input-Output losses 

To estimate future economic losses in 2050 we would need data on the future disaggregation 

of the economy into IO sectors, which would show whether new industry sector classifications 

are created and how the economic linkages (the A matrix) between economic sectors would 

change in the future. Unfortunately, such data does not exist. The next best alternative was to 

assume the economic structure remains unchanged, but future losses would grow in relation to 

future projections in demands and GDP growth. Hence, we estimated future economic losses 

(𝐋𝐨𝐬𝐬𝑓𝑢𝑡𝑢𝑟𝑒) from Equation (10), where GDP is the assumed annual growth rate projection in 

percentage for the UK, 𝐋𝐨𝐬𝐬𝑐𝑢𝑟𝑟𝑒𝑛𝑡  are the economic losses estimated with the current 

economic structure but with the total sector demands and disruptions (from Equations (8) and 

(9))  based on future projected values, and T = 2050-2017: 

𝐋𝐨𝐬𝐬𝑓𝑢𝑡𝑢𝑟𝑒 = (1 +
𝐺𝐷𝑃 

100
)

𝑇

𝐋𝐨𝐬𝐬𝑐𝑢𝑟𝑟𝑒𝑛𝑡      (10) 

 

We assumed a GDP growth rate of 1.9% for the UK, based on recent studies80. 

                                                 
80 https://www.pwc.co.uk/press-room/press-releases/uk-could-remain-top-10global-economy-in-2050.html 

https://www.pwc.co.uk/press-room/press-releases/uk-could-remain-top-10global-economy-in-2050.html
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4. RESULTS 

4.1 Example demonstration of cascading failures and impacts 

To demonstrate our failure model and its results we first show an example failure event, with 

the sequences of failures and impacts that follow this event. In this example case we consider 

single dependencies between networks, where one node of a network connects to only one node 

of another. 

 

Figure 4-1 shows a failure event initiated in the electricity network at the node location marked 

by the red star. This initiating failure triggers disruptions of several source-sink flow paths, as 

a result of which several other nodes are affected. Subsequently in this example, 115 more 

electricity nodes lose all flow connections and are considered failed. This whole sequence of 

failures on the electricity network comprises an Order 0 failure effect. 

 

Due to dependencies directed from electricity towards other networks, the failed electricity 

nodes disrupt telecoms and railway nodes to trigger the next sequence of failures, which are 

Order 1 effects. In the Order 1 effects we see that there are 44 macro cells and 2 exchanges 

that lose their electricity supply and are considered failed. Also 1 railway utility asset fails due 

to loss of electricity supply.  

 

The next sequences of failures show how the interdependencies between networks can cause 

failure feedbacks into the initiating network, thereby triggering further failure cascades. From 

Figure 4-1 we see that there are Order 2 failures in the electricity network due to the failures 

to the telecoms assets on which the electricity nodes were dependent, thus resulting in 18 more 

electricity nodes losing all flow connections and hence failing. Two water nodes also fail in a 

similar mechanism to the electricity network failures. These failures are all triggered due to 

dependencies of these networks on telecoms assets, which failed in Order 1 sequence of events.    

 

The newly failed electricity nodes trigger another set of Order 3 failure cascade, which result 

in knocking out the supply to 5 macro cells and 1 more railway utility asset. In this example 

we did not notice any further feedbacks for the telecoms back to the electricity. But the new 

railway failure (Order 3) knocks out a whole route section (a link) resulting a several journeys 

being affected. The final Order 4 failure sequence demonstrates how widespread the journey 

disruptions are on the railways network.  

 

Table 4-1 shows the total impacts in terms of the disrupted customers following each Order of 

failure. This result strongly highlights the significance of considering cascading failures across 

networks. As shown in the results, an additional 64,000 electricity customers are disrupted due 

to telecoms failures, while railways is not initially affected by any failures but there is a delayed 

sequence of events that ultimately disrupt about 82,000 railway passenger journeys.          
  Table 4-1: Total disruption impact due to the failure event and its triggered failure cascades.  

Initiating Network Order User Disruptions 

Electricity 0 158,801 

Telecoms 1 87,885 

Rail 1 0 

Electricity 2 64,046 

Telecoms 3 7,372 

Rail 3 0 

Rail 4 82,103 

Total 
 

400,207 
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Following the estimation of the user disruptions we estimate the infrastructure direct economic 

losses and total economic losses due to this failure event. Here the only user disruptions are 

recorded in the electricity, telecoms and railways networks, which result in direct demand 

losses to the economic sectors with these networks (see Table 3-11). Assuming the disruptions 

last for 24 hours and the economic losses correspond to losing demand from the equivalent of 

24 hours of customers across sectors, the direct and total economic losses estimated for this 

event are shown Table 4-2. Here the direct demand losses of £131,507/day in the electricity 

sector correspond to the total customer disrupted (Order 0 + Oder 2), and similarly the telecoms 

and rail demand losses correspond to their total customer losses. Due to the forward and 

backward linkages in the economic IO model, there are indirect economic losses to all sectors 

that use electricity, telecoms and railways outputs, and some of these losses feedback to these 

infrastructure sectors as well. Here, the indirect losses for electricity are also almost as high as 

direct losses, which shows electricity has significant feedbacks from the rest of the economic 

systems. The sector ‘Other’ corresponds to the total losses added across all 124 non-

infrastructure sectors in the UK economy (see Appendix B), which have about £345,000/day 

indirect economic losses. Overall the economic impact of this event results in about £0.92 

million/day total economic losses. 

 
  Table 4-2: Total economic losses due to the failure event and its triggered failure cascades.  

Network/Sector 
Direct economic 

losses (£/day) 

Indirect economic 

losses (£/day) 

Total economic losses 

(£/day) 

Electricity 131,507 98,699 230,206 

Telecoms 71,233 4,575 75,808 

Rail 260,274 636 260,910 

Water 0 286 286 

Road 0 6,667 6,667 

Others 0 345,069 345,069 

Total 463,014 455,932 918,946 
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Order 0 – Electricity failure event: 116 nodes failed 

 
Order 1 – Telecoms: 44 macro cell and 2 exchanges failed  

 
Order 1 – Railways: 1 utility failed 

 
Order 2 – Electricity: 18 nodes failed 

 
Order 2 – Water: 2 nodes failed 

 
Order 3 – Telecoms: 5 macro cells failed 

 
Order 3 – Rail: 1 utility failed 

 
Order 4 – Rail: Representative of journeys affected  

Figure 4-1: Demonstration of example failure cascading event and the sequences of failures it generates 

across multiple networks. 



                                                                                                                          

53 | P a g e  
 

4.2 Understanding systemic propagation of failures 

Systemic assessment of failures involves analysing a large numbers of failure events and 

inferring some generalised behaviours of networks in terms of the instances and impacts of 

failure propagations. We conducted such systemic assessment to answer the following two 

questions: 

   

1. What are the different (inter)dependencies between networks and how do these affect 

failure propagation? 

2. Can we see a difference in the failure propagation if we increase the connections between 

networks? 

 

To understand the overall role of network interdependencies in failures cascades, we looked at 

the exhaustive set of all ‘single point’ initiating failure events in a network. Here single point 

implied that an individual node from a network was removed and then its failure sequences 

were estimated by the model. We considered the exhaustive analysis for the electricity and 

telecoms network nodes, because every other network was dependent on these two networks.   

 

We further looked at the failure propagation effects when the degrees of network connections 

were increased. This was the done to see whether there were any reductions in cascading 

failures if more redundancy were added to the networks.  

 

4.2.1 Extent of cascading failures 

Figure 4-2 shows Sankey diagrams of the chain of cascading events in the current system state 

due to failures initiated in the electricity network, by testing all 18,061 individual node failures. 

We note here that the dimensions of the rectangles and arrows in the three plots are not shown 

to the same scale, and to avoid confusion we have reported the values next to each arrow. The 

first rectangle in each plot shows the total number of failure events, which are same in each 

case. The subsequent rectangles show what percentages of the total failure events correspond 

to particular sector(s) and order effect – for example Rail:1(1.02%) means 1.02% of all failure 

events resulted in Order 1 Rail failures only. In the notation Telecoms+ (or Electricity+) 

implies that Telecoms (or Electricity) is one of the disrupted sectors and there might possibly 

be other sectors (water, railways, roads) disrupted simultaneously. From the first result in 

Figure 4-2(a), where we assumed that a selected node from one network was dependent upon 

only one node of another network, we infer that: (1) The most significant chain of cascading 

failures is from electricity to telecoms, with about 40% events leading to telecoms and at least 

one of rail and water disruptions, with further 20% events leading to electricity failures, and 

5.7% to another order of telecoms failures; and (2) About 5.2% failure cascades go to Order 4 

and above.  

 

In the case where the degrees of connections are increased to two, by linking each dependent 

node to two nodes of the supplying network, we see from Figure 4-2(b) that: (1) Cascading 

failures are reduced significantly, with about 5.6% events leading to telecoms and at least one 

of rail and water disruptions, with further 0.9% events leading to electricity failures, and 0.11% 

to another order of telecoms failures; and (2) About 0.02% failure cascades go to Order 4 and 

above.   

 

Figure 4-2(c) shows the results when the degrees of connections are increased to three, linking 

each dependent node to three nodes of the supplying network. The results show that: (1) 
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Cascading failures are again reduced significantly, with about 3.9% events leading to telecoms 

and at least one of rail and water disruptions, with further 0.33% events leading to electricity 

failures, and 0.01% to another order of telecoms failures; and (2) Order 4 and above cascading 

failures are avoided.  
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(a) Single connections 

 
(b) Two connections 

 
(c) Three connections 

Figure 4-2: Failure propagation showing numbers of instances of individual failure events cascading from 

electricity to other networks and beyond under different degrees of connections between links. 
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Figure 4-3 shows similar Sankey diagrams of the chain of cascading events in the current 

system state due to failures initiated in the telecoms network, by testing all 38,444 individual 

node failures. From the single connections result in Figure 4-3(a) we infer that: (1) In 

comparison to electricity, there are fewer cascading failures from telecoms, with about 7.8% 

events leading to electricity and at least one of rail and water disruptions, with further 1.8% 

events leading to another order of telecoms failures; and (2) About 0.43% failure cascades go 

to order 4 and above. Telecoms failures have less cascades because we assume that if at least 

one connection to a working exchange or macro cell still exists then the dependent asset is still 

functioning. Hence in reality the model accounts for two dependencies on telecoms, but since 

on most cases the macro cells are dependent on the exchanges, so if the exchange fails then the 

macro cell would fail as well.    

  

In the two connections case for telecoms we see from Figure 4-3(b) that: (1) Cascading failures 

are almost gone, with about 0.34% events leading to electricity and at least one of rail and 

water disruptions, with further 0.02% events leading to another order of telecoms failures; and 

(2) Order 3 and above failures are eliminated. 

   

Similarly the three connections case results of Figure 4-3(c) show that: (1) Cascading failures 

are almost gone, with about 0.3% events leading to electricity and at least one of rail and water 

disruptions, with further 0.02% events leading to another order of telecoms failures; (2) Order 

3 and above failures are eliminated. 
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(a) Single connections 

 
(b) Two connections 

 
(c) Three connections 

Figure 4-3: Failure propagation showing numbers of instances of individual failure events cascading from 

telecoms to other networks and beyond under different degrees of connections between links. 
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4.2.2 Failure impacts as user disruptions 

Comparing the failure impacts in terms of the numbers of disrupted users (customers over a 

day) of each sector, and cumulatively, further shows the failure events whose disruptions create 

highest impacts and the effect on these disruptions if the degrees of connections are increased. 

 

Figure 4-4 shows all user disruptions, across all current day networks, due to the failures 

initiated in the electricity network. Only those failure events are shown that led to >50,000 user 

disruptions, which are reported as a percentile (on the x-axis) of the exhaustive set of events. 

For visual clarity, each figure also shows the top 50 failure event outcomes.  

 

From the first result in Figure 4-4(a), with the single connections, we infer that: (1) There are 

about 20% of failure events for which the failures are above 50,000 which is a significant 

number of failures events out of the total of 18,061 events; (2) The highest impacts are recorded 

due to Order 1 and Order 3 disruptions in the water supply network that has very high demands 

concentrated at individual nodes, given that it is a high-level network. The largest disruption 

of about 8 million users is mainly due to a knock-on effect on the water network from an 

electricity failure; and (3) There are clusters of failure events that produce similar disruptions, 

which could indicate that these are assets that affect similar flow paths and dependencies. If 

such clustered failures occurred simultaneously then we might see similar impacts. For 

example, if there are three nodes close to each other and all cause the same failure impact then 

there it is very likely that they are all knocking out each other when failed individually. Hence, 

if all three were to fail at the same time, then it would produce the same failure effect and 

impact. 

 

In the two connections case we see from  Figure 4-4(b) that: (1) There is a significant reduction 

in the numbers of cases of failures exceeding 50,000 user disruptions, which is now about 7% 

of  total failure events; (2) The highest failure impact is now around 2.6 million users, which 

is again due to Order 1 water network failures. But most of the high impact failures in the water 

network are eliminated in comparison to the single connections case. There are some Order 1 

railway failures that also contribute to the highest impact events.       

 

Figure 4-4(c) shows the three connections case results where: (1) The number of failures 

exceeding 50,000 users does not differ much from the case with two connections case, and is 

around 7% of total failure events; (2) There is a significant reduction in the highest failure 

impact event, which now results in 1.3 million user disruptions due to Order 1 telecoms and 

railway failure initiated from Order 0 electricity failures; (3) Most of the high impact water 

failure have been eliminated.        

  



                                                                                                                          

59 | P a g e  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Single connections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Two connections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Three connections 

Figure 4-4: Magnitudes of customer disruptions due to failures initiated in the electricity network under 

different degrees of connections between networks. 

 

 

Inset: Top 50 events  

Inset: Top 50 events  

Inset: Top 50 
events  
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Figure 4-5 shows the impacts for the failure initiated in the telecoms network. The first result 

in Figure 4-5(a), with the single connections, shows that: (1) There are about 2.7% of failure 

events for which the failures are above 50,000 which is a small but still significant number of 

failures events out of the total of 38,444 events; (2) Similar to the case of the electricity network 

initiated disruptions, the highest impacts are recorded due to Order 1 and Order 3 disruptions 

in the water supply network that has very high demands concentrated at individual nodes. The 

largest disruption of about 7 million users is mainly due to a knock-on effect on the water 

network from telecoms failure; and (3) There are clusters of failure events that produce similar 

disruptions, which could indicate that these are assets that affect similar flow paths and 

connections. If such clustered failures occurred simultaneously then we might see similar 

impacts.  

 

In the two connections case we see from  Figure 4-5(b) that: (1) There is a significant reduction 

in the numbers of cases of failures exceeding 50,000 user disruptions, which is now about 0.5% 

of  total failure events; (2) The highest failure impact is now around 280,000 users, which is 

due to Order 1 electricity network failures, following a telecoms failure; and (3) Almost all 

cascading failure have been eliminated, which is mainly because the telecoms provides the 

extra redundancies from both macro cell and exchange connections, which is effect makes it a 

case of four degree of connections.        

 

The results with three degrees of connections of Figure 4-5(c) are very similar to the results of 

the two interdependencies case, with the exception of a few more cascading failures to 

electricity being eliminated. This shows that there is not much gain in adding further 

redundancy with respect to controlling telecoms failures. 
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(a) Single connections 

 
(b) Two connections 

 

 
(c) Three connections 

Figure 4-5: Magnitudes of customer disruptions due to failures initiated in the telecoms network under 

different degrees of connections between networks. 
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4.2.3 Failure impacts as macroeconomic losses 

The economic losses resulting from the user disruptions are presented next, with specific focus 

on the 50 worst-case of impacts ranked in terms of the cumulative user disruptions. These 

economic losses show how the economic flows are first disrupted due to demand perturbations 

economic sectors causing direct losses.  The rest of the economy reacts to these losses and 

adjusts to a new equilibrium resulting in indirect and total output losses. We note that the 

cumulative user disruptions for an individual infrastructure network contribute towards direct 

economic losses, as the economic effects are considered to follow after all the user disruptions 

have been accounted for. 

 

As described in Section 3.10 the economic IO model developed for this study is a linear model 

where the output losses are a linear factor (L = [I-A]-1) times the direct losses. One of the 

inferences from the IO data is to find the multiplier effects, as explained and estimated by the 

Office of National Statistics from their IO data81, of each sector’s demand losses on the rest of 

the economy, which show the ratio between the total economic losses and the demand losses 

in a particular sector. Table 4-3 shows these multiplier effects for the infrastructure network 

specific economic sectors, where for example we see that for every 1 unit of direct demand 

losses in the electricity sector the total economic losses will be 2.36. These multiplier effects 

show which sector has greater interdependencies to the rest of the economic sectors, with 

electricity being a basic commodity that is used by most sectors so it has the highest multiplier 

effects.           

 
Table 4-3: Infrastructure networks specific economic sectors and their multiplier effects.  

Economic sector Multiplier effect 

61 - Telecommunications services 1.41 

35.1 - Electricity, transmission and distribution 2.36 

36 - Natural water; water treatment and supply services 1.53 

49.3-5 - Land transport services and transport services via pipelines, excluding rail 

transport 

1.64 

49.1-3 - Rail transport services 1.95 

 

Figure 4-6(a) shows error bar plots with the mean values and 95% confidence intervals for 

economic losses averaged across all top 50 user disruptions events for failures initiated by the 

electricity networks and considering only single degrees of connections. The results show the 

direct and total economic losses for the infrastructures specific sectors and the rest of the 

economy (‘Other’ sectors). The important insights gained from this result are that the largest 

economic losses are recorded in the railways sectors, which are as high as £2.7 million/day. 

Earlier, from Figure 4-4(a) we saw that user disruptions were highest in the water network. 

This difference arises because proportionally the railway sector is more impacted in terms of 

reduced capacity to meet journey demands as compared to the water supply sectors 

proportional reduction in demands. The analysis shows that direct losses for the top 50 failure 

events vary between £0.36 million/day – £3.4 million/day and total losses vary between £0.58 

million/day – £6.7 million/day, with the event specific total losses being 1.52 – 1.99 times the 

direct losses. 

 

                                                 
81 Howse. J. (2013). Input-output analytical tables: methods and application to UK national accounts. Office of National Statistics, UK. 
Available online:   

https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/articles/inputoutputanalyticaltables/methodsandapplicationtouknatio

nalaccounts, Accessed April 2020.   

https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/articles/inputoutputanalyticaltables/methodsandapplicationtouknationalaccounts
https://www.ons.gov.uk/economy/nationalaccounts/supplyandusetables/articles/inputoutputanalyticaltables/methodsandapplicationtouknationalaccounts
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It is also important to note that economic losses and user disruptions might not be similarly 

ranked for failure events, i.e., the largest user disruptions might not result in the largest 

economic losses. This is highlighted in Figure 4-6(b) where the largest user disruption event 

of 7.8 million user disruptions has about £3.2 million/day economic losses but events with less 

than 3 million user disruptions produce the highest economic impacts. This is again due to the 

proportional impacts on railway capacity to meet demands which result in highest economic 

impacts.     

 

 
(a) Direct and total macroeconomic losses - Single connections 

 
(b) Total economic losses vs User disruptions – Single connections 

Figure 4-6: (a) Mean value with 95% CI estimates of direct and total macroeconomic losses across top 50 

user disrupted events initiated by electricity failures; (b) scatter plot between the total economic losses and 

user disruptions.    

Figure 4-7 shows the similar results for the failure events initiated in telecoms network with 

single degrees of connections. Here again the highest economic losses are recorded in the 

railway sector (Figure 4-7(a)), which can be high as £2.5 million/day. The analysis shows that 

direct losses for the top 50 events vary between £0.22 – £3.6 million/day and total losses vary 

between £0.34 – £7.0 million/day, with the event specific total losses being 1.52 – 1.99 times 

the direct losses. Again, the largest user disruption event of 7.2 million user disruptions has 

about 2.1 £million/day economic losses but events with less than 3 million user disruptions 
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produce the highest economic impacts. This is again due to the proportional impacts on railway 

sector demands which result in highest economic impacts.       

 

 
(a) Direct and total macroeconomic losses - Single connections 

 
(b) Total economic losses vs User disruptions – Single connections 

Figure 4-7: (a) Mean value with 95% CI estimates of direct and total macroeconomic losses across top 50 

user disrupted events initiated by telecoms failures; (b) scatter plot between the total economic losses and 

user disruptions.    

As the degrees of connections are increased the economic impacts will decrease, and as the 

network failure cascades decrease the economic impacts will be driven mostly by the failures 

in the initiating sector. This is very pronounced in the cases where the telecoms network-

initiated failures are analysis with two and three degrees of connections. Figure 4-8(a)-(b) 

shows the direct and total macroeconomic losses for the top 50 user disruption event with 

electricity-initiated failures with two and three connections linkages. We note that these are not 

necessarily the same 50 events in each case, as some for some events the failures are 

significantly reduced when more redundancies are added between networks. From the results 

of Figure 4-8(a)-(b) economic losses to railways still remain the most dominant but their 

highest total losses are respectively reduced to about £2.1 million/day and £1.4 million/day. 

The overall demand losses range from £0.17 million/day – £2.5 million/day and total losses 

range from £0.26 million/day – £4.92 million/day for the two connections case, while for the 

three connections case the such losses are in the ranges £0.17 million/day – £1.9 million/day 
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and £0.26 million/day – £3.77 million/day respectively. For both cases the event specific total 

losses are 1.52 – 2.36 times the direct losses, with values being highest when the direct 

economic losses are mainly due to electricity disruptions. 

 

Figure 4-8(c)-(d) shows similar results as the Figure 4-8(a)-(b), but with telecoms-initiated 

failures with two and three connections respectively. Since the user disruptions for both cases 

are very similar (see Figure 4-5(b)-(c)) the economic losses show similar results. In both cases 

the economic losses to telecoms are the most dominant, since most cascading failures are 

eliminated. The highest direct losses are only about £0.09 million/day in both cases. The overall 

demand losses range from £0.05 million – £0.19 million/day and total losses range from £0.08 

million/day – £0.36 million/day for both cases. The event specific total losses are 1.41 – 1.93 

times the direct losses, with lower values occurring when there are telecoms disruptions only 

while the multiplier effect gets increased when electricity disruptions also contribute to 

economic losses.         
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(a) Two connections 

 
(b) Three connections 

 
(c) Two connections 

 
(d) Three connections 

 Figure 4-8: Mean value with 95% CI estimates of direct and total macroeconomic losses across top 50 user 

disrupted events initiated by electricity failures with instances of (a) two connections and (b) three 

connections, and events initiated by telecoms failures with instances of (c) two connections and (d) three 

connections.    
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4.3 Role of backups 

To understand the role of backups in a systemic way, we re-simulated all single point failure 

scenarios, with the additional constraint of having backups. Such systemic assessment was 

done to answer the following two questions: 

   

1. What is the effect of adding backups to the different interdependent nodes?  

2. What are the failure sequences and over what timeframe do they occur?  

 

We assumed that the disruptions lasted 100 hours, in order to exhaust the backups and see how 

the disruptions would progress post-backup. Given, that we did not consider any hourly load 

profiles for any sector we assumed that: (1) For the electricity, telecoms and water sectors once 

a disruption at some time t (<100) was recorded with a certain number of customers it would 

last till the completion of the 100 hours; and (2) For the transport sectors the daily number of 

passengers were assumed to be uniformly divided in the hourly intervals, hence the growth 

progression of the numbers of disrupted passengers would be linear from the time of initial 

disruptions till the completion of 100 hours.  

 

Figure 4-9 shows results for one example event, where we compare the results when there are 

(a) no backups and (b) backup supply, corresponding to the case of having single connections 

between networks. From the first result, of Figure 4-9(a) with no backups we see that the 

disruptions all begin at time t=0, continuing till the 100 hours. Due to the assumptions of linear 

change in rail disruptions over time, there is a steady growth of the disruptions to around 118 

million customer-hours by the end of the over failure event. 

 

When backups are added to the telecoms assets, in this case, there is a delay in disruptions 

which vary across disrupted telecoms assets due to the assumed gamma probabilistic 

distribution. The result in Figure 4-9(b) shows the average disruption over time across 20 

simulations of the same failure event. After some initial telecoms disruptions in the first 2 

hours, mainly of macro cells, there is second sequence of telecoms exchange and macro cell 

disruptions around 10 hours which triggers the further order effects across sectors. Once the 

backups have been exhausted at around 24 hours, the disruptions grow to around 104 million 

customer-hours till the 100 hours. 

 

Figure 4-9(c) quantifies the gains made in this example by adding backup supply. Here the 

difference between the results of Figure 4-9(a) with Figure 4-9(b) are shown as the avoided 

disruptions. The results highlight that for this event cumulatively 14 million customer-hours of 

disruptions are avoided due to the backup supply, and 57%-87% of the total avoided 

disruptions are acquired within the first 10-24 hours. This highlights the importance of having 

backup supply and crucially also shows that if the original disrupted networks were to be 

restored then there are several gains that can be made if the repairs occurred within 10-24 hours 

after the initiating failure event. Especially if the repairs happened closer to 10 hours then most 

of the Order 2 are greater disruptions could be avoided.           

 



                                                                                                                          

68 | P a g e  
 

 
(a) Failure propagation over 100 hours assuming no backups 

 
(b) Failure propagation over 100 hours assuming with backups 

 
(c) Avoided disruptions over time with backups. 

Figure 4-9: Results of example event disruptions showing the progression of failure over time with: (a) no 

backups; (b) with backups; and (c) difference between the two cases. 
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To see whether the above hypothesis can be generalised beyond this one event, we look at the 

time-averages of disruptions across the top 50 worst-case failure events with single degrees of 

connections. We investigate the top 50 events of cumulative user disruptions for failures 

initiated by the electricity network, and also the top 50 events of cumulative user disruptions 

for failures initiated by the telecoms network. These results are shown in Figure 4-10. For the 

case when the failures are initiated by the electricity network (Figure 4-10(a)-(b)) on average 

backup supply effects prevent disruptions to grow till around 10 hours after which the impacts 

grow significantly till around 24 hours and further till up to 42 hours when the electricity 

backup supply of telecoms exchanges are first exhausted followed by water backups being 

exhausted. The time-averaged cumulative losses across these events result in about 247 million 

customer hours of disruptions over 100 hours (Figure 4-10(a)), which is about 51 million 

customer hours or 17% less (Figure 4-10(b)) than the disruptions if there were no backups. 

33%-75% of the total avoided disruptions occur between the first 10-30 hours when most of 

the backup supply is still working. 

                

When the failures are initiated by the telecoms network (Figure 4-10(c)-(d)) there are no 

telecoms backup supply so significant disruptions occur from the start. But later when the 

electricity network creates further disruptions the electricity backup supply effects prevent 

disruptions to grow till around 10 hours after which the impacts grow significantly till around 

24 hours when the electricity backup supply of telecoms assets are first exhausted. There are 

some more delayed disruptions when some of the electricity supply of the water assets is 

exhausted, though this is not very significant. The time-averaged cumulative losses across these 

events result in about 212 million customer hours of disruptions over 100 hours (Figure 

4-10(c)), which is about 16 million customer hours or 7% less (Figure 4-10(d)) than the 

disruptions if there were no backups. 35%-75% of the total avoided disruptions occur between 

the first 10-30 hours when most of the backup supply is still working, which is very similar to 

behaviour for the electricity induced failures. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-10: Time-averaged values of top 50 user disruption events for electricity and telecoms initiated 

failures showing the progression of failure over time with backups (a/c), and the avoided disruptions in 

comparison to when there was no backup supply (b/d). 
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4.4 Comparing effectiveness of different options 

The two types of resilience options that we have investigated in this study involve: (1) adding 

more redundancies to connections between networks; and (2) incorporating backup supply for 

electricity into different assets for a given duration of network inoperability. We now look at 

the combined effectiveness of these options in preventing disruptions across each network.  

 

We consider the case of ‘single connections and no backup supply’ as the baseline case. From 

the cumulative user disruptions estimated for this baseline case we select the top 50 most severe 

events. For the same top 50 events we then estimate the disruptions for the following resilience 

enhancing options: (1) Two connections (2C); (2) Three connections (3C); (3) Backup supply 

(B); (4) Two connections and with backup supply (2C+B); and (5) Three connections and with 

backup supply (3C+B). We find the percentage difference between the user disruptions for 

each event corresponding to each case and take the average across all events to find the average 

reduction in disruptions due to the given resilience enhancing option. This is a measure of the 

average effectiveness of the option, with respect to lowering the worst cases of baseline 

impacts. We note that we will get similar results if we had chosen economic losses as a metric 

because the economic losses are a linear function of the user disruptions, as the IO model used 

is this study is a linear model.  

 

Figure 4-11 shows the results for the case when the disruptions are initiated by the electricity 

network failures, where the results for the cases (1)-(5) are shown anti-clockwise on each plot. 

The axis of each plot shows the percentage reduction in average disruptions for each resilience 

enhancing option. From the results we can see that mostly adding two connections (2C) is very 

effective by itself in reducing the user disruptions and the gains made by adding another degree 

of connections (3C) are marginal. With respect to the 2C and 3C options, for the selected 50 

worst-case disruptive events in the baseline case, the electricity disruptions are reduced by 

about 70% in both cases mainly because higher order electricity failures resulting for telecoms 

networks are eliminated. This is evident when we see that telecoms disruptions are reduced on 

average by 91%-95%, eliminating further electricity disruptions. Similarly, water and road 

disruptions are reduced on average by at least 90% and at most 100%. For railways adding 

three connections (3C) reduce disruptions on average by 93% in comparison to 82% reduction 

with two connections (2C), showing that there are some gains the adding more redundancy to 

reduce railway disruptions. The backup supply (B) case is most effective for roads where on 

average disruptions are reduced by about 40%, and for other networks the gains are between 

10%-23%. With the options that include combined backup and increased connections, the 

biggest gains are made in the electricity networks where the 2C+B option reduces disruptions 

on average by 78% and the 3C+B option reduces disruptions on average by 81%, a gain of 

10%-13% over the options with no backup supply. This shows that adding backup electricity 

supply to other networks can in turn reduce and delay further cascading impacts on the 

electricity network and help avoiding disruptions. The effects of all these options in reducing 

the total cumulative disruptions are quite effective with backup supply by itself reducing 

impacts by 20% and with increased redundancies and backup supply the disruptions are 

reduced on average by 89% (2C+B) and 94% (3C+B). Since all these event results in causing 

cumulative disruptions in excess of 1 million users and £0.5 million/day (see Figure 4-6) such 

gains are quite significant.  

 

Similar results for failures initiated in the telecoms networks are not shown here because 

most the cascading disruptions are eliminated with the 2C and 3C options are seen in Figure 



                                                                                                                          

71 | P a g e  
 

4-3 and Figure 4-5, which shows that these options by themselves are most effective in 

reducing telecoms initiated disruptions.   

           

      

 
Figure 4-11: Spider plots showing the average percentage decreases in user disruptions for the 50 worst 

cumulative disruption events for infrastructure networks for different resilience enhancing options in 

comparison to the baseline option. The failures here are initiated by the electricity networks 
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4.5 Future networks and failures 

4.5.1 Changing network vulnerabilities 

Systemic assessment of the future network failures was done in a similar manner to the current 

networks, in response to the question: 

1. How would the network vulnerabilities change in the future under different planning 

scenarios? 

 

Figure 4-12 shows Sankey diagrams of the chain of cascading events in the future networks 

state due to failures initiated in the electricity network, by testing all 18,800 individual node 

failures. From the first result in Figure 4-12(a), with single connections, in comparison to the 

current network result of Figure 4-2(a) there are about 188 fewer instances of cascading failures 

in the future networks, which means that some network redundancy has increased by adding 

new sources. We infer that: (1) The most significant chain of cascading failures is from 

electricity to telecoms and as  further, with about 37% events leading to telecoms and at least 

one of rail and water disruptions, with further 19% events leading to electricity failures, and 

4.9% to another order of telecoms failures; and (2) About 4.2% failure cascades go to Order 4 

and above. 

 

In the case where the connections are increased to two we see from Figure 4-12(b) that: (1) 

Cascading failures are reduced significantly, with about 4.95% events leading to telecoms and 

at least one of rail and water disruptions, with further 0.8% events leading to electricity failures, 

and 0.09% to another order of telecoms failures; and (2) About 0.03% failure cascades go to 

Order 4 and above. In comparison to the current network result of Figure 4-2(b) there are about 

88 fewer instances of cascading failures in the future networks.  

 

Figure 4-12(c) shows the results when the connections are increased to three the results show 

that: (1) Cascading failures are again reduced significantly, with about 3.5% events leading to 

telecoms and at least one of rail and water disruptions, with further 0.32% events leading to 

electricity failures, and 0.01% to another order of telecoms failures; and (2) Order 4 and above 

cascading failures are avoided. In comparison to the current network result of Figure 4-2(c) 

there are about 51 fewer instances of cascading failures in the future networks. 
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(a) Single connections 

 
(b) Two connections 

 
(c) Three connections 

Figure 4-12: Failure propagation from electricity to other networks in the future with different degrees of 

dependencies. 
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Figure 4-13 shows Sankey diagrams of the chain of cascading events in the future system state 

due to failures initiated in the telecoms network, by testing all 38,444 individual node failures. 

From the single connections result in Figure 4-13(a) we infer that: (1) In comparison to 

electricity, there are fewer cascading failures from telecoms, with about 8% events leading to 

electricity and at least one of rail and water disruptions, with further 1.8% events leading to 

another order of telecoms failures; and (2) About 0.28% failure cascades go to order 4 and 

above. The results are very similar to the current day results of Figure 4-3(a).    

  

In the two connections case for telecoms we see from Figure 4-13(b) that: (1) Cascading 

failures are almost gone, with about 0.38% events leading to electricity and at least one of rail 

and water disruptions, with further 0.02% events leading to another order of telecoms failures; 

and (2) Order 3 and above failures are eliminated. The results are very similar to the current 

day results of Figure 4-3(b). 

   

Similarly the three connections case results of Figure 4-13(c) show that: (1) Cascading failures 

are almost gone, with about 0.3% events leading to electricity and at least one of rail and water 

disruptions, with further 0.02% events leading to another order of telecoms failures; (2) Order 

3 and above failures are eliminated. The results are very similar to the current day results of 

Figure 4-3(c). 
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(a) Single connections 

 
(b) Two connections 

 
(c) Three connections 

Figure 4-13: Failure propagation from electricity to other networks in the future with different degrees of 

dependencies. 
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We next look at the changes in failure impacts in the future, in comparison to the current 

impacts. Figure 4-14 shows the current total user disruptions > 50,000, for the electricity-

initiated failures, on the y-axis and the percentage by which these change in the future network 

configurations on the x-axis. While most failure impacts are expected to increase in the future 

due to increase in population, there are instances where the failures decrease due to increased 

network redundancies provided by adding more sources. 

 

Figure 4-14(a) shows the results for the case where one degree of connections was considered. 

The largest failure event’s disruption impact increases by 25%, and similarly most of the 

highest impact events above 2 million disruption increase by 5%-25% in the future. But there 

are significant numbers of events clustered around the -100% change values, where the impacts 

are almost eliminated. These instances are the ones where adding future generation capacities 

seems to have provided gains in terms of reducing the impacts. 

 

The Figure 4-14(b) case with two degrees of connections also shows that the highest failure 

event impact increases in the future, though by only about 10%. And the other instances of 

impacts > 800,000 users also increase in the future by 5%-40%. Here again there are some 

instances of failures in excess of 400,000 where the future impacts decrease by 100% due to 

add sources.   

 

The final case with three degrees of connections from Figure 4-14(c) shows that the highest 

failure event impact increases in the future by about 26%, and most significant failure impacts 

increase by 5%-45% in the future. There are some instances of failures in excess of 400,000 

where the future impacts decrease by 100% due to add sources. 

 

Figure 4-15 shows similar results for the case where the telecoms networks were the initiating 

network for failures. As we saw in previous results of Figure 4-3, Figure 4-5 and Figure 4-13 

that the telecoms network initiated failure propagations in the future do not change much and 

most cascading failures are eliminated as the degrees of connections are increased from one to 

two and three. Hence the results of Figure 4-15(a) show that with one degree of connections 

some instance of failure impacts are reduced by more than 50%, which could be attributed to 

increased redundancy in the electricity network. However, increasing the degrees of 

connections to two (Figure 4-15(b)) and three (Figure 4-15(c)) increase impacts because these 

are all mostly only telecoms impacts that grow due to population increase in the future and 

with no changes in network topology.     
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(a) Single connections 

 
(b) Two connections 

 
(c) Three connections 

Figure 4-14: Changes in user disruptions in the future networks in comparison to current disruptions, for 

failures initiated in the electricity network. 
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(a) Single connections 

 
(b) Two connections 

 
(c) Three connections 

Figure 4-15: Changes in user disruptions in the future networks in comparison to current disruptions, for 

failures initiated in the telecoms network. 

 

We also estimated the economic losses for the 50 worst-cases of cumulative user disruptions, 

similar to the analysis presented in Section 4.2.3. The 50 worst-case events in the future had 

the same initiating failure conditions as the ones in the current, so we get similar cross-sector 

losses as we saw in Figure 4-6 - Figure 4-8. The differences are seen in the increased losses in 

the future, accounting for the increased demand disruptions and GDP growth. 
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Figure 4-16(a)-(b) shows error bar plots with the mean values and 95% confidence intervals 

for economic losses averaged across all top 50 user disruptions events in the future for failure 

initiated by the electricity networks and telecoms networks respectively and considering only 

single connections. The results are similar to the results of Figure 4-6(a) and Figure 4-7(a), 

with the largest economic losses being recorded in the railways sectors in both instances. In 

the future, for electricity initiated events (Figure 4-16(a)), the highest economic losses in 

railways increase to about £5.9 million/day from the current losses of £2.7 million/day. The 

corresponding increases for the telecoms initiated losses case (Figure 4-16(b)) to about £5.0 

million/day from current levels of £2.5 million/day. Overall the cumulative direct economic 

losses in the future are as high as £7.0 million/day and the total losses are about £13.6 

million/day, for both the cases shown in Figure 4-16. Hence. The economic losses in the future 

increase by a factor of about 1.91 – 2.0 times the losses in the current scenarios, mainly driven 

by GDP growth as the primary factor and by population growth as the secondary factor. Similar 

results are seen in the cases with increased connections. 

 

 
(a) 

 
(b) 

Figure 4-16: Mean value with 95% CI estimates of direct and total macroeconomic losses in the future 

across top 50 user disrupted events initiated by (a) electricity failures; and (b) telecoms failures. Both cases 

are with single connections. 
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4.5.2 Exploring options for reducing impacts in the future 

Applying the resilience enhancing options, explored in the current scenarios (see Section 4.4), 

in the future networks shows similar gains averaged over the 50 worst-case use disruption 

events. Figure 4-17 shows these results for the electricity-initiated failures in the future, which 

again reinforce the effectiveness of enhancing network redundancy in significantly reducing 

and in some case eliminating the worst-case disruptive impacts. Here again, the effectiveness 

of the backup supply is also crucial in delaying and thereby decreasing the disruptions.  All 

these disruptive impacts are in excess of 1 million users/day and 1 £million/day added across 

all networks and can be as high as 10 million user/day and about 14 £million/day. So, reducing 

them by 85%-92% in the future with a combination of increased connections and backup 

supply (2C+B and 3C+B) would be very effective.      

 

 
Figure 4-17: Spider plots showing the average percentage decreases in user disruptions in the future for 

the 50 worst cumulative disruption events for infrastructure networks for different resilience enhancing 

options in comparison to the baseline option. The failures here are initiated by the electricity networks. 
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Another possible option for enhancing resilience in the future in the electricity networks is to 

consider the possibility that Electric vehicles (EV) could be used as a backup supply option for 

residential consumption, when the grid supply would be disrupted. We explore this option by 

analysing the total disrupted electricity demand load in MW from each electricity-initiated 

failure event where there are non-zero disruptions to the network. From the allocation of spatial 

demands in the electricity network (see Section 3.8) in the future we were able to estimate the 

EV peak demands on the grid, which we use as a proxy for installed EV capacities at the sink 

node level, which could be potentially used as a backup supply. 

 

Figure 4-18 shows the scatter plots between the electricity network user disruptions and the 

demand load disruptions in MW corresponding to the Hydro70 and Elec70 scenarios 

respectively. Since the assignment of demand loads is based on the geographic spread of 

building footprint areas, which generally correlate well with population densities, hence the 

demand disruptions and user disruptions are mostly perfectly correlated but there are a few 

exceptions in the model result. As expected, the load disruption in the Elec70 scenario are 

much higher than the Hydro70 scenario because of the increased heating demand in this 

scenario. For both the future energy scenarios the installed EV capacity is the same, as it comes 

from the transport sector which has one EV demand in the future. Hence, the effectiveness of 

the installed EV capacity can be compared between the two scenarios. The Figure 4-18 result 

show that the installed EV capacity has more potential of being effective as a backup in the 

Hydro70 future scenario, in comparison of the heat demand intensive Elec70 scenario. For the 

Elec70 scenario (Figure 4-18(b)) mostly the available EV capacity is only about 0%-20% of 

what is needed to meet disrupted load MW demand loads, which would probably not be very 

effective. But for the Hydro70 scenario (Figure 4-18(a)) the available EV capacity is between 

20%-40% of the disrupted load for some of the high user disruption events and is even in excess 

of 60% for instances where user disruptions are as low as 1,300 and as high as 170,000. 

Generally lower values of user disruptions occur at locations of sparse populations, where the 

electricity grid connections and accessibility might not be very good. Hence, repairs to restore 

the electricity supply to such locations might take time, making in worthwhile to explore the 

EV’s as a source of supply to households. We note that in both instances the largest load 

disruptions do not have enough EV capacity to merit it as a suitable supply backup option.          

  

 
(a) 
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(b) 

Figure 4-18: Scatter plots showing the disrupted electricity demand load in MW vs the user disruptions 

with the potential available EV capacity as a percentage of the disrupted electricity demand load 

corresponding to each failure event in the (a) future Hydro70 scenario; and (b) future Elec70 scenario.   
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5. CONCLUSIONS OF STUDY AND FURTHER ANALYSIS 

  

The aim of this study was to satisfy the NIC’s main requirements1 to: 

1. To pilot an approach to assess the key physical vulnerabilities of the current UK economic 

infrastructure system. 

2. To draw out vulnerabilities that arise from network architecture and how these are likely to 

change in the future. 

3. To inform the development of a framework to identify actions to assess, improve and 

monitor the resilience of the system. 

Through the analysis we have highlighted how interdependencies create disruptions beyond 

the asset and network where the failure was initiated.  

 

In order to understand how the cascading failures could be controlled we increased the 

redundancy in connections across networks, which showed that adding two degrees of 

connections can result in a huge reduction of the cascading failures. Adding a third degree of 

connections creates further incremental gains, though these depend on the specific asset and 

network.    

 

We also looked at the role of backup electricity supply in delaying failure impacts and for 

making a case for prioritising controlled repairs of networks. With an example case we were 

able to demonstrate that there is a lot of value in fixing disruptions within the first 10-24 hours 

timeframe when most of the backup supply prevents further failure cascades. 

 

We also looked at future networks during some scenarios of future changes to national 

infrastructure that were suggested by the NIC. In a scenario in which more supply points were 

added to the national electricity network there are projected to be some gains in increasing 

redundancies in networks and reducing failure impacts.    

 

5.1 Strengths and limitations of the analysis 

This analysis provides the first national-scale interdependent infrastructure network analysis 

done in such detail. To our knowledge such extent of data collection and modelling of multiple 

infrastructure networks and their physical connections has not been done before at a national 

scale. We have created unique electricity and telecoms network representations with novel data 

and methods. The water supply network, though high-level is the first detailed representation 

of the water resource system for England and Wales. Our rail and road networks, built from 

previous studies, provide a realistic national-scale view of how these systems function. The 

process of collecting data and modelling connections between the networks is also quite unique 

and has resulted in novel representations of physically interdependent networks. 

 

This study has also created a first set of representations of future electricity networks, factoring 

in realistic future network scenarios of increased supply and demand. We have collected best 

available projections of the location of future network developments and incorporated them 

into our model. 
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The failure analysis provides a unique perspective of cascading failures by mapping out the 

orders in which network disruptions occur and propagate towards other networks. This 

evidence is very useful for understanding how cascades could be controlled by introducing 

network redundancy and by adding backup supply options.       

 

Though the study is quite detailed, there are a number of limitations that we acknowledge exist 

in the current modelling approach. We note that several of these limitations arise due to the 

limited time and scope of this study, given that it is an initial analysis and focussed on proof of 

concept. Some of the study limitations we highlight are:  

  

1. We do not have the actual data for the locations of assets and network topology of many 

systems. In particular for the telecoms asset and networks, we are aware that there are 

smaller operators that we have not considered and modelled in our study.  Similarly, for 

the water network detailed data on the distribution networks going all the way to 

households does not exist openly.  

2. There is very limited data on network interdependencies, which is mostly assumed in this 

study. 

3. Due to the lack of data within and across networks it is not easy to estimate how much 

redundancy there is in the systems. 

4. The flow assignments on the network has been done in a very simplistic manner, while 

more dynamic flow assignment models would represent network behaviours more 

accurately. 

5. In the failure analysis we have only tested single points of failures and their resulting 

impacts. In real-life hazard events multiple network failures are more prone to happen and 

would provide a more comprehensive picture of failure propagation incidents.    

 

5.2 Future opportunities 

In this study we have developed an infrastructure systems resilience model that incorporates 

interdependent energy, transport, digital and water infrastructure at a national scale. Though 

there are limitations to the analysis, as listed above, the model development provides a unique 

capability for exploration of the resilience of national infrastructure systems, so that resilience 

can be better factored into future NIC work. In this study we have addressed a small number 

of scenarios of future infrastructure systems, but this model could be used to explore a much 

wider range of future infrastructure investments and policies that could be considered in the 

next National Infrastructure Assessment.  

 

There are several opportunities to develop upon the models and analysis built for this study. 

1. Improved data collection – In order to do a comprehensive national-scale infrastructure 

network risk and resilience analysis there is a need to collect more data across all sectors. 

In particular, the quality of analysis would be improved by better data on:  

a. Digital communications networks, including smaller digital providers and 

connectivity between data processing assets.  

b. Water trunk mains and distribution pipe networks 

c. Interdependencies between infrastructure networks 

2. Analysis of cyber dependencies – Modern infrastructure is dependent on digital networks 

for many aspects of system operation and control. Though we have represented some 

aspects of interdependencies with digital networks, to fully understand the vulnerability of 
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modern infrastructure networks would require more consideration of how digital 

technologies are embedded in all other infrastructure, including the implications of 

software interdependencies as well as hardware networks. 

3. Coverage of missing networks – The study did not include wastewater, sewage treatment 

and drainage infrastructure. Nor did it include solid waste processing and recovery assets. 

These could be incorporated in order to cover the main economic infrastructure sectors 

considered by the National Infrastructure Commission. 

4. International interdependencies – UK infrastructure is embedded in global networks. In 

this study we have considered electricity interconnectors to Europe. There are also 

significant interdependencies with the rest of the world via shipping, aviation and digital 

communications. Future developments could consider how UK infrastructure services may 

be disrupted through interconnections with the rest of the world. 

5. Coverage of supply chains – The study did not include supply chain disruptions due to 

infrastructure failures, as they were out of the scope of the study. Supply chain disruptions 

would significantly affect economic impacts. These could be in considered in future work.    

6. Information sharing – The main gap in systems research arises due to the lack of 

information sharing across sectors, which mostly is confined to the high-level of narratives 

and expert opinions. We are not aware of any instance where asset level information is 

shared across sectors and factored into their risk and resilience planning. Hence there is a 

need for some initiative to share data that could be used to provide analytics are the ones 

developed in this study. Such data could include, among others, location specific 

information of assets of different networks with connectivity information, the types of 

services being provided between networks, the demand and capacity limitations of the 

network interfaces, additional network redundancies and backups in place during 

disruptions. For continued vulnerability assessments, it is also crucial that such information 

be updated regularly (at least annually) and changes are made to the information sharing 

arrangements between assets and networks.     

7. Processed-based network models – There is a need to develop better processed-based 

network models at detailed scales, which provide a more dynamic understanding of the 

progression of failures within and across networks. Such models would also combine 

performance metrics of service provision with customer disruption and economic losses, 

which would be more useful for sector long-term and resilience planning. 

8. Analysis of hazards and risks – The approach taken in this study has been to adopt a ‘hazard 

neutral’ approach, which has systematically tested many thousands of scenarios of failure. 

A complete risk analysis would consider the range of hazards (both natural and mand-

made) to which national infrastructure could be exposed, at present and in the future. It 

would also consider the likelihood of failure of each infrastructure asset that is exposed to 

a hazard of given severity, i.e. the fragility of each asset. This requires further information 

and analysis, but full risk analysis provides the basis for prioritisation of investments and 

other interventions to improve network resilience.  

9. Coping, repair and recovery – In this study we have examined one approach to enhancing 

coping capacity during a disaster i.e. the use of back-up storage. There are other strategies 

that could be adopted to help to avoid disruption and speed up recovery. A more complete 

analysis of infrastructure network resilience would examine the capacity to restore systems 

to a functional condition and restart networks.  

10. Empirical validation of failure scenarios – The failure scenarios that we have tested have 

been scrutinised by practitioners and domain experts to confirm their realism and validity. 

More work could be done to collect data on real failures and use that data to validate models 

of system failure.  
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11. Combining long-term planning objectives with resilience planning objectives – This 

analysis demonstrated an approach to look at some future planning scenarios for the 

electricity network, but other networks were not considered.  For further analysis planning 

scenarios for all sectors could be considered and incorporated into the failure estimations. 

More importantly future analysis might look at how a tool could be used to consider 

resilience in any long-term planning objectives and make it possible to develop a capability 

for informed decision making. For example, further analysis could consider how we 

increase network redundancies in the future and what type of long-term planning would be 

needed to achieve that.   

12. Harnessing modelling and capabilities for future studies – This study has created several 

unique infrastructure network datasets and modelling capabilities that could be useful for 

the NIC in other studies as well. An initial step of creating a manual documenting the 

project model codes, written in Python programming language, has been achieved and 

transferred to the National Infrastructure Commission.  The codes and accompanying 

datasets could next be setup and run on NIC controlled secure computational systems where 

these important national models will be hosted and can be used for future studies.  
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APPENDIX A: VULNERABILITY CHARACTERISTICS 

A.1 Defining and choosing vulnerability characteristics 

In this study we are looked at vulnerability characteristics of networks in response to the two 

questions below.  

 

1. Can we identify a list of possible characteristics of the UK infrastructure networks that 

provide indications of the vulnerabilities of the system, as well as its resilience? 

2. How do we establish criteria to identify the relative importance of each characteristic in 

different parts of the system as well as compared to other characteristics? 

 

Though this line of inquiry was limited because we were not able to find any useful insights 

on the relevance of these characteristics to be able to inform us about network vulnerabilities 

and their significance in informing us about improving resilience. Further investigation is 

needed on this topic. 

 

The characteristics of the UK infrastructure networks that provide indications of the 

vulnerabilities of the system are therefore understood in the context of the above types of 

interdependencies. A vulnerability characteristic denotes a metric that can explain the 

strengths or weaknesses of network interdependencies in influencing the failure propagation 

and resulting vulnerabilities across networks. 

 

Table A-1 shows the list of network characteristics that have been reviewed and selected to be 

relevant for this study. 

 
Table A-1: Long list of vulnerability characteristics and their vulnerability implications. 

Network 

metric/characteristic 

name 

Meaning 
Implications on 

vulnerability 

Infrastructure examples 

drawn from literature 

1. Degree centrality 
Number of linkages that a node or 

edge has. 

Provides information on 

which nodes/edges could 

physically knock out most 

of their surrounding 

network. 

Most well-known network 

graphs studied include: (1) 

Scale-free: With node 

degree centrality following 

a power law, and are 

robust to random failures 

but not targeted; (2) 

Random (Erdos-Reyni): 

With binomial node 

degree centrality, and are 

robust to targeted failures 

but not random
82,83. 

2. Clustering 

coefficient 

Degree to which connected node 

triplets of networks cluster 

together. 

Provides information on 

which groups on nodes 

would knock out each 

other. 

Barrett et al (2004)
84 - 

Show that electricity 

networks have low degree 

distributions, low 

clustering coefficients, 

medium diameters, and so 

are very less robust. Also, 

show that wireless ad hoc 

                                                 
82 Newman, M. E. (2003). Mixing patterns in networks. Physical Review E, 67(2), 026126. 
83 Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256. 

84 Barrett, C., Eubank, S., Kumar, V. A., & Marathe, M. V. (2004). Understanding large scale social and infrastructure networks: a 

simulation based approach. SIAM news, 37(4), 1-5. 
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networks have medium 

degree, high clustering, 

medium diameter, and so 

are more robust. 

3. Closeness 

centrality and 

Diameter 

Average length of the shortest 

path from a node and all other 

nodes in the graph. Thus, the 

more central a node is, the closer 

it is to all other nodes. Maximum 

shortest path is called the 

diameter. 

Provides information on 

which nodes/edges could 

most quickly knock out 

flows. 

Daqing et al (2011)
85 - 

Have linked this to the 

node degree distributions, 

the probabilities of 

traversing a certain 

distance on the network, 

and the distributions of the 

number of network 

clusters due to percolation. 

4. Betweenness 

(path) centrality 

The number of times a node/edge 

acts as a bridge along the shortest 

path between two other nodes. 

Tells us about the how 

nodes/edges being 

knocked out could affect 

network flows 

Robson et al (2015)
86

 - 

The authors have 

demonstrated that real 

infrastructure networks are 

close to hierarchical 

networks as they are scale 

free but also have 

significant hubs with large 

connections. The 

ramifications of this on 

failures are then analysed 

by looking at the 

distributions of numbers 

of subgraphs as nodes are 

removed randomly or by 

selecting based on degree 

centrality or betweenness. 

5. Assortativity 

The likelihood of nodes with 

similar properties to be connected, 

e.g. similar degree. Mainly the 

correlation coefficients of degrees 

between pair of links nodes. 

Provides information 

about the connectivity 

within and between 

networks. Quick way to 

infer if two networks are 

connected at important 

hubs. 

6. Eigenvector 

centrality 

Measure of how well connected a 

node is to other 

well-connected nodes in the 

network. 

Quick way to accessing 

the relative contribution of 

nodes in influencing and 

spreading failures. High 

eigen score means a node 

is connected to other 

nodes with high 

connectivity as well. So 

knocking off high eigen 

score nodes could knock 

out other high eigen score 

nodes as well. 

Rueda et al (2017)
87

 -  

Compared robustness of 

15 telecommunications 

networks for several 

centrality metrics. 

7. Percolation 

centrality 

Defined for a given node, at a 

given state, as the proportion of 

shortest paths between a pair of 

nodes, where the source node is 

percolated (e.g., disrupted). 

Tells us about the how 

source nodes being 

knocked out could affect 

network flows. 

8. Cross-clique 

centrality 

Determines the connectivity of a 

node to different completely 

connected subgraphs (called 

cliques). 

Tells us if a node from one 

network can knock out all 

nodes in another. A node 

with high cross-clique 

connectivity facilitates the 

disruption of all nodes in 

the clique. 

9. Heterogeneity 
Coefficient of variance in nodal 

degree (node centrality). 

Tells us if the overall 

network structure might be 

well connected or have 

some significant hubs. 

10. Trophic coherence 
Describes how neatly the nodes 

fall into distinct levels in a 

Tells us how different 

network hierarchies are 

organised, which could be 

                                                 
85 Daqing, L., Kosmidis, K., Bunde, A., & Havlin, S. (2011). Dimension of spatially embedded networks. Nature Physics, 7(6), 481. 
86 Robson, C., Barr, S., James, P., & Ford, A. (2015). Resilience of hierarchical critical infrastructure networks. UCL STEaPP. 

87 Rueda, D. F., Calle, E., & Marzo, J. L. (2017). Robustness comparison of 15 real telecommunication networks: Structural and centrality 

measurements. Journal of Network and Systems Management, 25(2), 269-289 
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directed network, in terms of their 

degrees. 

useful for understanding 

failures at different levels. 

11. Motif 

concentration 

Describes the chances of 

occurrence for a specified 

network motif - repeated small 

components within the network. 

Provides information on 

local robustness of 

network in inferring global 

robustness. If a locally 

robust pattern is repeating 

a lot on the network, then 

it can be inferred to be 

robust. 

12. Algebraic 

connectivity 

The second smallest eigenvalue of 

the Laplacian matrix (i.e. degree 

matrix minus adjacency matrix) 

of the graph. 

Larger values of algebraic 

connectivity represent 

higher robustness against 

efforts to decouple parts of 

the network, indicating 

network robustness and 

well-connectedness. 

13. Spectral gap 

Defined as the difference between 

the first and second eigenvalues 

of the adjacency matrix of the 

graph. 

A sufficiently large value 

of spectral gap is regarded 

as a necessary condition 

for the so-called “good 

expansion” properties, the 

existence of which, 

indicates higher structural 

robustness against node 

and link failures. 

14. Central point 

dominance 

The mean over the betweenness 

centrality values of all nodes 

indexed by the maximum value of 

betweenness (achieved at the 

most central-point). 

Describes the variance of 

betweenness centrality of 

the network. If the 

variance is low then the 

network is connected and 

robust, and if it is high 

then the network has one 

dominant connectivity 

whose failure can make is 

less robust. 

15. Spectral clustering 

Describes clustering of the 

network from the aspect of graph 

partition. 

Through the identification 

of a partition of the graph 

such that the edges 

between different groups 

have a very low weight 

and the edges within a 

group have high weight, 

provide information on 

minimum effort required 

to cut the network into 

communities. 

16. Core-periphery 

Describes a group of central and 

densely connected nodes and 

sparsely connected periphery 

nodes which governs the overall 

behaviour of a network. 

Shows which nodes are 

most connected to groups 

of lesser connected nodes 

in the network. Knocking 

out such well-connected 

nodes will knock out most 

of the network 

functionality. 

Rombach et al (2014)
88

 - 

Studied the London Tube 

network of 317 nodes (one 

for each station) and 

weighted edges that 

represent the number of 

direct, contiguous 

connections between two 

stations. They suggest 

that the London Tube has 

a core group of (about) 60 

stations and a periphery of 

257 

stations. 

                                                 
88 Rombach, M. P., Porter, M. A., Fowler, J. H., & Mucha, P. J. (2014). Core-periphery structure in networks. SIAM Journal on Applied 

mathematics, 74(1), 167-190 
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17. Hotspot centrality 

z-scores of network nodes and 

edges in terms of their spatial 

clustering within gridded lattices. 

Lattices with highest z-

scores will show the 

highest impacts on 

network vulnerability 

Thacker et al. (2018)
13

 - 

Showed hotspot centrality 

of UK infrastructure 

creates critical clusters of 

infrastructures with large 

customer impacts around 

big urban centres. 

18. MR(D) 

In an interdependent network, 

metric 

MR(D) denotes the minimum 

number of node removals from 

network A which causes the 

failure of D arbitrary nodes in 

network B. 

If MR(D) is low and D is 

high then if means 

network B is highly 

dependent on network A. 

Buldyrev et al (2010)
89 - 

Application on known 

degree distribution 

networks, and 

demonstration of Italy 

power-grid failure effect 

on Internet network. 

Parandehgheibi & 

Modiano (2016)
90 - Did a 

more theoretical 

presentation of the 

metrics. 

19. MRB(D) 

In an interdependent network, 

metric 

MRB(D) denotes the minimum 

number of node removals from 

both networks which causes the 

failure of D arbitrary nodes in 

network B. 

If MRB(D) is low and D is 

high then if means 

network B is highly 

dependent on network A 

and is not very robust 

itself. 

20. Source-sink 

centrality - 

Connectivity loss 

Describes the minimum number 

of sources in the network that are 

necessary to serve each demand 

location (sink). 

Provides information on 

the number of sources that 

you can knock out whilst 

ensuring that each sink is 

still connected to a source. 

Dueñas-Osorio & Vemuru 

(2009)
91 - Proposed these 

metrics for studying 

cascading failures in 

electricity networks 21. Cascading 

susceptibility 

Difference between source-sink 

connectivity loss after considering 

network cascades with 

connectivity loss by triggering 

event 

Shows how much 

cascading effects impact 

network performance. 

 

 

Table A-2 shows the short list of network characteristics, derived from the long-list of metrics 

proposed in the Inception report, that have been reviewed and selected to be relevant for this 

study. 

 

The rationale for selecting these metrics was that 

1. They represent centrality measures at the asset level, which is more useful for this analysis. 

2. There are tested network functions in Python language that we could build and test for these 

metrics. 

 

From the long-list the following metrics are not included because: 

1. Assortativity, Heterogeneity, Motif concentration, Algebraic connectivity, Spectral gap, 

Central point dominance, Spectral clustering – These are all global network metrics, which 

give 1 value for a graph. So, they do not apply at the individual nodes or edge level, which 

is more relevant to the study. 

2. Percolation centrality, Hotspot centrality, MR(D), MRB(D), Source-sink centrality - 

Connectivity loss, Cascading susceptibility – These are impact estimation metrics rather 

than network topology metrics from which we want to infer the results. So, they are more 

useful in understanding the results, and are captured in the failure analysis. 

 

  

                                                 
89 Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. 

Nature, 464(7291), 1025. 
90 Parandehgheibi, M., & Modiano, E. (2016). Robustness of bidirectional interdependent networks: Analysis and design. arXiv preprint 

arXiv:1605.01262. 

91 Dueñas-Osorio, L., & Vemuru, S. M. (2009). Cascading failures in complex infrastructure systems. Structural safety, 31(2), 157-167 
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Table A-2: Short list of vulnerability characteristics and their vulnerability implications. 

Network metric/characteristic name 

1. Degree centrality 

2. Clustering coefficient 

3. Closeness centrality 

4. Betweenness centrality  
5. Eigenvector centrality 

6. Cross-clique centrality 

7. Trophic coherence 

8. Path centrality 

9. Core-periphery (core number) 

 

A.2 Distributions of characteristics and correlations with failure impacts 

To understand the rationale and meaning of the network metrics finalised for this study, we 

looked at their distributions and correlations with single point failure impacts of individual 

networks. The aim of this analysis was to answer the following questions: 

1. What does each network metric mean in a generalised network graph?  

2. What does each metric signify specifically in the GB sector networks built for this study? 

3. How much are these network metrics correlated with disruptions estimated from individual 

asset failures? 

 

We were interested in figuring out whether we can infer anything about assets that are 

‘important’ and those which are ‘unimportant’  

 

In each of the distribution results presented below we normalised each network metric score of 

a scale from 0-1, and also created a combined metric score by adding the normalised scores of 

all metrics giving them equal weightage.  Below we discuss the results for the centrality metrics 

of only the electricity and telecoms networks, because we tested these two networks for failure 

analysis. 

  

Electricity networks 

 

Figure A-1(a) shows the distributions of the different network metrics, which are explained in 

Table A-. In Figure A-1(b) we compare how the combined metric score correlates with the 

failure impacts of nodes, considering only impacts on the electricity network. The reason for 

this comparison was to understand whether the most central nodes also caused the highest 

impacts in the network. We see that for the electricity network the most central nodes do not 

have the highest impacts, and in fact the highest impact nodes have low centrality measures. 

This is because the most central nodes in the electricity network are located at the transmission 

levels, where the nodes are all very connected and 1 node failure do not have any impacts due 

to the N-1 design reliability of the network. At the lower distribution levels (HV and LV) the 

nodes are not that central as the networks are not that well connected, resulting in single points 

disruptions that can lead to significant impacts.       
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Table A-3: Description of the electricity network metrics and their explanations. 

Network 

metric/characteristic 

name 

Explanation of distribution 

Degree centrality A few discreet integer values mostly dominated with transmission level 

substations 

Clustering coefficient Most of the network has low values = 0. But few clusters at the transmission 

level can be identified 

Closeness centrality Due to a well-defined network structure values are well distributed, with 

transmission level nodes having highest values 

Betweenness centrality Most of the network has values = 0. But few nodes at the transmission level 

have high values as most shortest-paths pass through them 

Eigenvector centrality Most of the network has values close to 0. But few nodes at the transmission 

level have high values 

Cross-clique centrality Similar behaviour as node degree centrality, but rankings might not be the 

same 

1/Trophic coherence All sources have a trophic level = 1 and sinks have the lowest values of around 

0.1 

Path centrality Values very similar to betweenness centrality 

Core number  Values are either =1 (for most nodes), =2 (when HV connects to LV), = 3 

(when transmission nodes connect to HV and LV)   

    

 

 
(a) 

 
(b) 

 Figure A-1: Electricity network plots showing: (a) the distributions of the different network metrics; and 

(b) the correlation of the weighted metric score and the user disruptions on the network when nodes are 

failed individually.   

Telecoms 

 

From the distribution of the metrics and their correlations with the impacts shown in Figure A-

2 we can see that in the telecoms network the exchanges are the most central nodes and also 

have the highest failure impacts. Given the radial structure of the network between the 

exchanges and the macro cells, this outcome is expected. Hence, for the telecoms network the 

metrics are useful in identifying the most central and high impact nodes simultaneously.  
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Table A-4: Description of the telecoms network metrics and their explanations. 

Network 

metric/characteristic 

name 

Explanation of distribution 

Degree centrality Ranked by exchanges with most connected macro cells and most customers  

Clustering coefficient All = 0 – As there are no 3 nodes connected to each other 

Closeness centrality Same values as the most degree central nodes, but differences in the lower 

values. 

Betweenness centrality All = 0 – Because no shortest path between two nodes passes through a third 

Eigenvector centrality Same ranking order as node centrality 

Cross-clique centrality Same values and ranking as node centrality 

1/Trophic coherence All exchanges have a trophic level = 1 and all macro cells have a trophic level = 

0.5. Which mainly means that the exchanges are sources and macro cells are 

connected to 1 source each 

Path centrality Same values and ranking as node centrality 

Core number  All = 1 – Because each set of nodes are with 1 core cluster 

Combined metric Same ranking order as node centrality and other metrics that agree with it 

    

 

 
(a) 

 
(b) 

Figure A-2: Telecoms network plots showing: (a) the distributions of the different network metrics; and 

(b) the correlation of the weighted metric score and the user disruptions on the network when nodes are 

failed individually. 
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APPENDIX B 

Table B-1: 129 sector IO tables for the UK economy with sector specific multiplier effects. 
Sector 

code  
Sector name 

Multiplier 

effect 

1 Products of agriculture, hunting and related services          1.82 

2 Products of forestry, logging and related services          1.92 

3 Fish and other fishing products; aquaculture products; support services to fishing      1.95 

5 Coal and lignite              2.01 

06&07 Extraction of Crude Petroleum And Natural Gas & Mining Of Metal Ores 1.59 

8 Other mining and quarrying products            1.69 

9 Mining support services              1.56 

10.1 Preserved meat and meat products            2.40 

10.2-3 Processed and preserved fish, crustaceans, molluscs, fruit and vegetables        2.04 

10.4 Vegetable and animal oils and fats           1.75 

10.5 Dairy products               2.30 

10.6 Grain mill products, starches and starch products          2.11 

10.7 Bakery and farinaceous products             1.93 

10.8 Other food products              1.87 

10.9 Prepared animal feeds              2.09 

11.01-6 

and 12 
Alcoholic beverages & Tobacco products         1.79 

11.07 Soft drinks               2.17 

13 Textiles                1.39 

14 Wearing apparel               1.56 

15 Leather and related products             1.57 

16 
Wood and of products of wood and cork, except furniture; articles of straw and plaiting 

materials 
1.69 

17 Paper and paper products             1.57 

18 Printing and recording services             1.71 

19 Coke and refined petroleum products            1.35 

20A Industrial gases, inorganics and fertilisers (all inorganic chemicals) - 20.11/13/15       1.64 

20B Petrochemicals - 20.14/16/17/60              1.72 

20C Dyestuffs, agro-chemicals - 20.12/20             1.74 

20.3 Paints, varnishes and similar coatings, printing ink and mastics        1.52 

20.4 Soap and detergents, cleaning and polishing preparations, perfumes and toilet preparations      1.73 

20.5 Other chemical products              1.53 

21 Basic pharmaceutical products and pharmaceutical preparations           1.34 

22 Rubber and plastic products             1.49 

23OTH

ER 
Glass, refractory, clay, other porcelain and ceramic, stone and abrasive products - 23.1-4/7-9    1.78 

23.5-6 Cement, lime, plaster and articles of concrete, cement and plaster  1.98 

24.1-3 Basic iron and steel             1.75 

24.4-5 Other basic metals and casting            1.51 

25OTH

ER 

Fabricated metal products, excl. machinery and equipment and weapons & ammunition - 25.1-

3/25.5-9    
1.54 

25.4 Weapons and ammunition              1.45 

26 Computer, electronic and optical products            1.53 

27 Electrical equipment               1.56 

28 Machinery and equipment n.e.c.             1.65 

29 Motor vehicles, trailers and semi-trailers            1.61 

30.1 Ships and boats              1.87 

30.3 Air and spacecraft and related machinery           1.69 

30OTH

ER 
Other transport equipment - 30.2/4/9            1.68 

31 Furniture                1.63 

32 Other manufactured goods              1.53 

33.15 Repair and maintenance of ships and boats          1.85 

33.16 Repair and maintenance of aircraft and spacecraft          1.87 

33OTH

ER 
Rest of repair; Installation - 33.11-14/17/19/20           1.64 

35.1 Electricity, transmission and distribution 2.36 

35.2-3 Gas; distribution of gaseous fuels through mains; steam and air conditioning supply     2.10 

36 Natural water; water treatment and supply services          1.53 
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37 Sewerage services; sewage sludge             1.58 

38 Waste collection, treatment and disposal services; materials recovery services        1.82 

39 Remediation services and other waste management services          1.55 

41-43 Construction 1.92 

45 Wholesale and retail trade and repair services of motor vehicles and motorcycles     1.57 

46 Wholesale trade services, except of motor vehicles and motorcycles        1.76 

47 Retail trade services, except of motor vehicles and motorcycles        1.63 

49.1-2 Rail transport services              1.95 

49.3-5 Land transport services and transport services via pipelines, excluding rail transport      1.64 

50 Water transport services              1.88 

51 Air transport services              1.51 

52 Warehousing and support services for transportation           1.95 

53 Postal and courier services             1.56 

55 Accommodation services               1.58 

56 Food and beverage serving services            1.59 

58 Publishing services               1.66 

59-60 
Motion Picture, Video & TV Programme Production, Sound Recording & Music Publishing 

Activities & Programming And Broadcasting Activities 
1.57 

61 Telecommunications services               1.41 

62 Computer programming, consultancy and related services           1.44 

63 Information services               1.45 

64 Financial services, except insurance and pension funding          1.56 

65 Insurance, reinsurance and pension funding services, except compulsory social security 1.90 

66 Services auxiliary to financial services and insurance services         1.47 

68.1-2 Real estate services, excluding on a fee or contract basis and imputed rent    1.58 

68.2IMP Owner-Occupiers' Housing Services 1.23 

68.3 Real estate services on a fee or contract basis        1.37 

69.1 Legal services               1.38 

69.2 Accounting, bookkeeping and auditing services; tax consulting services         1.27 

70 Services of head offices; management consulting services          1.53 

71 Architectural and engineering services; technical testing and analysis services        1.60 

72 Scientific research and development services            1.49 

73 Advertising and market research services            1.55 

74 Other professional, scientific and technical services           1.52 

75 Veterinary services               1.31 

77 Rental and leasing services             1.56 

78 Employment services               1.71 

79 Travel agency, tour operator and other reservation services and related services      1.54 

80 Security and investigation services             1.50 

81 Services to buildings and landscape            1.68 

82 Office administrative, office support and other business support services        1.46 

84 Public administration and defence services; compulsory social security services        1.82 

85 Education services               1.20 

86 Human health services              1.16 

87-88 Residential Care  & Social Work Activities 1.44 

90 Creative, arts and entertainment services            1.41 

91 Libraries, archives, museums and other cultural services          1.50 

92 Gambling and betting services             1.33 

93 Sports services and amusement and recreation services          1.64 

94 Services furnished by membership organisations            1.24 

95 Repair services of computers and personal and household goods        1.48 

96 Other personal services              1.29 

97 Services of households as employers of domestic personnel         1.00 

38g Waste collection, treatment and disposal services; materials recovery services non-market 1.89 

49.3-5g 
Land transport services and transport services via pipelines, excluding rail transport non-

market 
2.16 

52g Warehousing and support services for transportation non-market 1.65 

59-60g 
Motion Picture, Video & TV Programme Production, Sound Recording & Music Publishing 

Activities & Programming And Broadcasting Activities non-market 
1.54 

84g Public administration and defence services; compulsory social security services non-market 1.48 

85g Education services non-market 1.36 

86g Human health services non-market 1.37 

87-88g Residential Care & Social Work Activities non-market 1.75 

90g Creative, arts and entertainment services non-market 1.73 
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91g Libraries, archives, museums and other cultural services non-market 1.50 

93g Sports services and amusement and recreation services non-market 1.73 

64n Financial Services NPISH 1.00 

68.1-2n Real Estate services NPISH 1.92 

69.1n Legal services NPISH 1.04 

72n Scientific research and development services NPISH 1.57 

75n Veterinary services NPISH 1.90 

81n Services to buildings and landscape NPISH 2.09 

85n Education services NPISH 1.27 

86n Human health services NPISH 1.53 

87-88n Residential Care & Social Work Activities NPISH 1.39 

90n Creative, arts and entertainment services NPISH 1.77 

91n Libraries, archives, museums and other cultural services NPISH 1.51 

93n Sports services and amusement and recreation services NPISH 1.83 

94n Services furnished by membership organisations NPISH 1.50 
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APPENDIX C 

Table C-1: Summarised list of assumptions made in this study and their rationale. 

Assumptions Rationale 
Limitations/Uncertainty 

created 

Part of code 

architecture 

Methodology   

Nodes were considered to 

have failed only when they 

lost all their service. Partial 

failure states, where nodes 

might still be operating at 

below 100% operational 

levels and providing reduced 

service were not considered. 

The assumption of total 

loss of service was 

considered appropriate 

because we were 

interested understanding 

worst-case scenarios of 

large-scale widespread 

disruptions. 

In reality network nodes 

might functional at 

reduced service levels, 

which might show 

reduced failure impacts 

than what are estimated 

in this study.  

Built-in function 

in the failure 

analysis code. 

For utility networks of 

electricity, water supply and 

telecoms nodes service 

disruption impacts were 

estimated only for failed 

nodes. For transport networks 

we assumed that failures were 

initiated in a way similar to 

the utility networks with 

nodes completely losing their 

ability to provide service, and 

we also accounted for 

disruptions to nodes that lost 

part of their pre-disruption 

journeys due to network 

failure propagation. 

For utility networks, as 

long as there is access to 

network flows, the service 

would continue. For 

transport networks the 

service is mobility of 

people, which will be 

reduced if some flow 

paths cannot be accessed. 

In reality for all networks 

partial flows along paths 

with reduced service 

levels would happen. 

Due to data and time 

limitations and no 

dynamic flow modelling 

done in this study we 

were not able to represent 

such effects.  

Cross-sector dependencies 

inferred by connecting nodes 

of dependent network to the 

geographically closest nodes 

of the supplying network.   

Nearest connection 

represents the path of least 

resistance of service flows 

and is also most cost 

effective in terms of 

materials and design of 

systems.   

Lack of any data on how 

different network assets 

are actually connected. 

Difficult to verify across 

whole country. Is a major 

source of uncertainty 

because cascading 

failures depend on how 

the cross-sector nodes are 

connected.   

Built-in function 

in code to join two 

selected nodes by 

straight line 

geometry. 

Static representations of 

flows between source and 

sink nodes by mapping all 

shortest distance paths based 

on network algorithms or 

known travel routes. 

Building dynamic flow 

representation, which 

would be a ‘correct’ way, 

was beyond the time scale 

of this study, as it is an 

initial proof of concept 

exercise. The static flow 

paths models are a good 

proxy for showing the 

relative importance of 

routes. 

In some networks like 

electricity and water 

mapping all source-sink 

flow paths means 

assigning more 

redundancies than what 

might be in reality. While 

for road and rail only 

considering known travel 

routes might under-

represent the network 

redundancies.   

Built-in functions 

in code to 

estimates flow 

path allocations 

for each network.   

Only residential customer 

demands considered for 

electricity, telecoms and 

water networks. 

No information was 

available on spatially 

disaggregated demands 

from businesses and other 

non-residential customers  

Excluding non-

residential/industry 

demands means we are 

under-representing the 

magnitudes of failure 

impacts in several 

instances.   

Built-in functions 

in codes for each 

sector to spatially 

map census 

datasets/travel 

data to service 

areas of nodes.  

Roads and railways demands 

based on only passenger 

travel patterns. 

No information was 

available on freight and 

other commercial travel. 
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No network flow rerouting 

and dynamics considered in 

the failure analysis. 

Building dynamic failure 

analysis was beyond the 

time scale of this study, as 

it is an initial proof of 

concept exercise. 

Rerouting would mean 

network redundancies 

have been accounted for 

properly. At present we 

might be over accounting 

for redundancies in the 

electricity and water 

networks and under 

accounting in the 

transport networks.  

Built-in function 

in the failure 

analysis. 

Economic loss estimations 

based on a simplified 

demand-driven Leontief IO 

model. Losses result from 

disruptions lasting a day.  

Though more complex IO 

models exist in literature, 

the Leontief IO model is 

still the most widely used 

and is very good in 

capturing multiplier 

effects of infrastructure 

disruptions, which we 

wanted to represent. 

The linear Leontief IO 

model is an 

oversimplification of 

economic productivity. 

We are not accounting 

for all demand side 

disruptions except 

household losses, and not 

considering any supply 

side losses. Neither are 

we accounting for 

substitution effects in the 

economy that would 

reduce economic 

impacts. See Section 3.10 

for further limitations of 

the IO model.   

Built-in 

function/code for 

economic loss 

analysis.  

Increasing redundancies 

between networks considered 

as resilience enhancing 

options. 

Due to lack of data we do 

not know how assets of 

different network connect 

with each other and at 

how many locations. 

Increasing the connections 

provides a good 

sensitivity check for 

testing the possible ways 

in which cross-sector 

network assets might 

actually connect. 

There are large 

uncertainties in assigning 

connections properly. So 

the results will be very 

sensitive to how 

redundancies are added 

and removed.   

Built-in function 

in code to join two 

selected nodes by 

straight line 

geometry. 

Backup supply of certain 

assumed durations considered 

as a resilience option to 

absorb and delay initial shock 

impacts. 

Reasonable assumption as 

many asset owners do 

keep backup generators in 

cases of emergency 

response. Good substitute 

when we have no 

information on post-

disruption recovery and 

repairs planning of assets. 

Uncertainties are created 

in the way the backup 

durations are modelled. 

See below.  

Assumed 

parameters in the 

model. 

Sector specific data   

Electricity – Only peak 

annual demand load in MW 

considered as a single state 

representation of the network.  

The peak load state shows 

the condition under which 

the network will be most 

stressed, which is what we 

need for failure analysis 

Only one realisation of 

peak demand loads has 

been considered. 

Uncertainties in how the 

peak is estimated would 

mean that a range of peak 

loads should be 

considered in the 

analysis. 

Built in the source 

data extracted for 

demand 

modelling.  

Electricity – All possible 

directed source-sink flow 

In agreement with the 

notion that electricity 

Mapping all source-sink 

flow paths means 

Built-in functions 

in code to 
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paths mapped. For direction 

of flow was from 

transmission network to the 

high voltage network and 

then to the low voltage 

network.  

network would work 

under a N-1 reliability 

state 

assigning more 

redundancies than what 

might be in reality. We 

are not checking whether 

the source capacity is less 

than the demand. 

estimates flow 

path allocations.   

Telecoms – Only BT 

exchange network 

represented based on open 

data and a model 

understanding of how the 

core network nodes should be 

connected. 

No data was available on 

other telecoms providers  

Considering only one 

provider would mean we 

cannot account for 

telecoms redundancies. 

We are allocating all 

customers to only one 

provider here.   

Built in the source 

data extracted for 

demand 

modelling. 

Telecoms – Mobile network 

represented as macro cells 

connected to telecoms 

exchanges in a radial network 

structure. 

No data was available on 

actual connectivity 

between mobile and fixed 

network, but expert 

opinion suggests it should 

be radial.  

Underlying asset data is 

quite old and has not 

been updated for a while. 

Built in the source 

data extracted for 

network 

modelling. 

Telecoms – Failures to 

exchange network only 

occurred if the whole inner 

core network failed at once. 

This is consistent with the 

evidence that telecoms 

core network is a very 

resilient network and has 

a lot of redundancies.  

This seems to be a 

reasonable assumption. 

Built-in functions 

in code to estimate 

telecoms failures.   

Water supply – Represented 

as a high-level public supply 

network useful for modelling 

water transfers between water 

resource zones. 

No data was available on 

a detailed water network. 

Due to a very high level 

and sparse network 

representation failure 

analysis will show very 

high impacts. Which 

might provide an 

unrealistic picture that 

the water network is not 

very resilient. 

Built in the source 

data extracted for 

network 

modelling. 

Water supply – All possible 

directed source-sink flow 

paths mapped. 

Same principle as applied 

to the electricity network. 

Mapping all source-sink 

flow paths means 

assigning more 

redundancies than what 

might be in reality. We 

are not checking whether 

the source capacity is less 

than the demand load. 

Built-in functions 

in code to 

estimates flow 

path allocations.   

Rail – Single track 

representations of geospatial 

routes on the national railway 

network. 

No data available on 

multiple tracks. 

Flow paths route choices 

will be limited.    

Built in the source 

data extracted for 

network 

modelling. 

Rail – Flow paths based on 

passenger train timetable 

data, and passenger numbers 

based on annual station usage 

statistics. 

No data available on other 

types of travel patterns 

and actual passenger 

travel data is not publicly 

available.   

Train timetable 

information provides a 

very realistic 

quantification of travel 

patterns. But not having 

passenger travel data 

means there is a lot of 

uncertainty in how 

passengers are assigned 

on trains and routes. 

Built-in functions 

in code to 

estimates flow 

path allocations.   

Rail – Failures estimated by 

assuming all trains along a 

disrupted route are stopped 

and all passengers are 

disrupted. 

Possible over estimation 

of failures, but there have 

been several instances of 

total shutdowns of 

railways during failures. 

We are not accounting 

for rerouting done by 

passengers who might 

jump onto other trains or 

use the road network. 

Built-in functions 

in code to estimate 

railways failures.   
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Roads – Only major roads 

network considered. 

No data available on 

minor roads network, 

especially on network 

flows. 

Having a more complete 

road network would 

mean flow assignments 

would be more 

disaggregated. At present 

all flows are assigned 

onto the major roads. 

Built in the source 

data extracted for 

network 

modelling. 

Roads – Flows modelled 

from a high-level OD matrix 

by mapping shortest time 

paths between nodes as the 

only preferred travel routes. 

The purpose of the 

analysis was to show the 

relative importance of 

routes, which is very well 

captured by showing the 

most preferred travel 

routes.   

We are not considering 

multiple routes of travel 

between a given OD pair, 

which would be more 

realistic. 

Built-in functions 

in code to 

estimates flow 

path allocations.   

Roads – Failures estimated by 

assuming all cars along a 

disrupted route are stopped 

and all passengers are 

disrupted. 

Same as railways. 

We are not accounting 

for rerouting done by 

passengers who might 

jump onto other trains or 

use the road network. At 

present we are 

overestimating road 

failures. 

Built-in functions 

in code to estimate 

roads failures.   

Interdependency mapping   

Electricity and telecoms were 

assumed to be interdependent 

networks, by creating 

directed links from chosen 

electricity nodes (substations) 

towards telecoms nodes 

(exchanges and macro cells), 

and other sets to direct links 

from telecoms nodes to all 

electricity nodes. 

We were most interested 

in modelling 

instantaneous failure 

propagations and failure 

impacts of the order of a 

few days, not a few 

weeks. Hence, electricity 

and telecoms were 

considered to be the two 

sectors whose failures 

would have such short-

term failure propagation 

effects. It was reasonable 

to exclude longer term 

dependencies e.g. the 

dependency of the 

electricity sector on water 

supply (in absence of 

storage) and transport for 

fuel. These assumptions 

were validated with sector 

experts during Quality 

Assurance (QA) 

consultations. 

Removal of telecoms to a 

node may not cause any 

instantaneous failures 

and be the case and may 

only impair operation. 

But due to lack of data 

we cannot account for 

this. 

Built-in functions 

in code to estimate 

network failure 

cascades.   

Water, rail and roads were 

considered to be dependent 

on either electricity or 

telecoms or both networks. 

Removal of service to the 

dependent assets implied 

total failure of the node 

(no partial functioning). 

Including for removal of 

telecoms service. This is 

probably an 

overestimation of the 

failure state of the assets. 

Link between two nodes 

created only if they are 

<10km apart. 

It would be irrational to 

connect nodes that are 

very far apart. 

The creation of cross 

sector edges is very 

sensitive to the choice of 

distance threshold. If we 

choose a smaller 

threshold, e.g. 1km, we 

would expect a smaller 

number of dependency 

linkages. This would also 

have a huge impact on 

failure cascades. 

Distance threshold 

parameter 

assumed in data 

creation. 

Backup supply    
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Only electricity backup 

supply considered, with 

telecoms macro cells having 

at most 2 hours supply, 

telecoms exchanges with at 

most 24 hours supply, all 

water assets with at most 72 

hours supply and road tunnels 

with at most 24 hours supply.   

These values were tested 

with sector experts while 

doing the QA consultation 

of the underlying data and 

assumptions.  

Due to lack of data we 

are limited in accounting 

for electricity backup 

supply in rail network, 

and also other backup 

supply (telecoms) for 

other networks.  

Backup durations 

value parameters 

are fixed inputs in 

the failure code. 

Backups assumed to last 

anywhere between 0 hours 

and the assumed duration it 

was assigned, as per a gamma 

probability distribution-based 

survival rate. 

Gamma distributions are 

very well-known 

distributions used to 

model infrastructure 

reliability for repairs. 

Adds uncertainty to the 

modes and orders of 

failures in the network. 

Useful for sensitivity 

analysis. 

Gamma 

distribution 

parameters 

encoded as fixed 

inputs within the 

backup function of 

the failure code 

Future network scenarios   

The future network state 

representations are chosen for 

the year 2050.  

Based on NIC feedback. 

• Only one realisation of 

future states and 

different scenarios 

were considered 

whereas there could be 

several possible future 

states. 

• All future projection 

scenarios of 

population, GPD, 

GVA, population 

growth, energy mix 

were fixed, which 

means deterministic 

future outcomes were 

considered. There 

should be greater 

uncertainty in 

estimating future 

possible outcomes.     

 

All future 

scenarios 

assumptions and 

parameters are 

built in the codes 

written for 

extraction and 

creation of future 

network and flow 

modelling. 

In 2050 it is assumed that 

70% of the generation mix in 

the electricity supply would 

be made up of renewables. 

The choice of 70% was 

based on the NIC’s 

assessment that these 

would be the most 

realistic futures given the 

current renewable energy 

trajectory and future 

nuclear phasing decisions 

being made in the UK. 

Two future electricity 

scenarios were considered: 

(1) Hydro70 – Where 

domestic heating would be 

predominantly provided 

through hydrogen gas; and 

(2) Elec70 – Where demand 

for heating by electrification 

would be very high. 

Based on NIC energy 

modelled work. 

By 2050 it assumed that the 

vehicle fleet would be 100% 

electric. 

Based on NIC transport 

modelling, which is in line 

with the governments 

targets to have 100% 

electric vehicles sales by 

2040.   

Under future scenario 

assumptions only electricity 

network topology is assumed 

to change, while all other 

network topologies remain 

the same. 

Only geospatial data on 

future energy technologies 

being planned was 

publicly available or could 

be inferred from reports. 

For all other sectors no 

geospatial data on future 

network level 

developments was easily 

available.  

Residential demands of all 

sectors would increase based 

on future high population 

growth rate forecasts.   

Based on NIC population 

scenarios modelling.  

High GVA growth scenario 

considered for future. 

Based on ITRC scenarios 

modelling. 
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Passenger usage on transport 

increase with population and 

GVA which has an elasticity 

factor of 0.63. 

Based on ITRC long-term 

transport model 

assumptions. 

The macroeconomic IO 

structure is assumed to 

remain unchanged in 2050. 

Future economic losses 

would grow based on 

compounded GDP growth 

rate of 1.9% forecasts for 

UK. 

No data on future IO data 

for the economy. Growth 

rate number Based on 

latest PwC report.  
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APPENDIX D 

Table D-1: Explanation and list of data resources used in the modelling. 

Description Source 

Energy – Network Topology The locations of the nodes were collected and verified from several 

sources92,93,94,95 and meticulously checked with satellite imagery as 

best as possible. Several of the substation data at the distribution level 

were simply scraped from Google Maps and OpenStreetMap.  

 

Similar data sources were used for geolocating the link information, 

which has lesser accuracy in terms of the geometries but more 

accuracy in terms of connecting the right types of nodes to each other. 

Energy - Demand Allocation The allocations of demands in MW was first done at the 380 Local 

Authority District (LAD)96 administrative area levels for Great 

Britain, using an energy demand model97 

 

Data on the supply capacities of the generation sites was collected94 to 

identify the source nodes and also to check that supply was greater 

than the demand. 

 

The LAD level data was further disaggregated to the Local Super 

Output Area (LSOA)98 level of which there were 41,667 polygons in 

Great Britain. The disaggregation at this finer scale was done by 

assuming the energy usage within each LSOA was in proportion to its 

building areas, where the data from building footprints was obtained 

from the Ordnance Survey (OS) MasterMap99. 

 

A similar principle was adopted in allocating residential customers to 

electricity nodes, by disaggregating LAD level population numbers to 

LSOA levels based on building footprints and then grouping the 

LSOA estimates to the nodes.   

Telecoms – Network topology   

OS Codepoint postcode100 data was also required to map this 

information into exchange boundary areas.  

 

For estimating core locations and other layers of the fixed network, 

information from Kitz101 or SamKnows102 on the BT’s 21st Century 

Network (21CN) was obtained. Core nodes exist in the most urban 

areas (London, Birmingham, Manchester, Leeds, Glasgow etc.) and 

Kitz provides a list of the specific core and metro node locations. A 

total of 85 exchanges were identified as metro nodes, with 12 of these 

being outer code nodes, and 8 being inner core nodes. 

 

                                                 
92 http://datasets.wri.org/dataset/globalpowerplantdatabase   
93 https://wiki.openmod-initiative.org/wiki/Power_plant_portfolios  -  
94 https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes 
95 https://www.nationalgridgas.com/land-and-assets/network-route-maps 
96 https://geoportal.statistics.gov.uk/datasets/local-authority-districts-december-2017-full-clipped-boundaries-in-great-britain  
97 Eggimann S, Hall JW, & Eyre N (2019). A high-resolution spatio-temporal energy demand simulation to explore the potential of heating 

demand side management with large-scale heat pump diffusion. Applied Energy, 236, 997-1010. 
98 https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-layer-super-output-area-lsoa-boundaries  -  
99 https://www.ordnancesurvey.co.uk/business-government/tools-support/open-mastermap-programme  
100 Ordnance Survey, 2019. Code-Point - locates every postcode unit in the UK [WWW Document]. URL 
https://www.ordnancesurvey.co.uk/business-and-government/products/code-point.html (accessed 10.8.19). 
101 https://kitz.co.uk/adsl/21cn_network.htm 
102 https://availability.samknows.com/broadband/exchanges/21cn_overview 

 

http://datasets.wri.org/dataset/globalpowerplantdatabase
https://wiki.openmod-initiative.org/wiki/Power_plant_portfolios
https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes
https://www.nationalgridgas.com/land-and-assets/network-route-maps
https://geoportal.statistics.gov.uk/datasets/local-authority-districts-december-2017-full-clipped-boundaries-in-great-britain
https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-cffdee47d500/lower-layer-super-output-area-lsoa-boundaries
https://www.ordnancesurvey.co.uk/business-government/tools-support/open-mastermap-programme
https://www.ordnancesurvey.co.uk/business-and-government/products/code-point.html
https://kitz.co.uk/adsl/21cn_network.htm
https://availability.samknows.com/broadband/exchanges/21cn_overview
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Cellular asset data was taken from Sitefinder103 and pre-processed to 

identify single site macro cell locations by buffering all points by 50 

meters104. 

 

We also assumed that each exchange either had Virgin Media 

operating within it, or did not, based on the cable availability 

provided by SamKnows. 

Telecoms - Demand 4G information on coverage by local authority was also taken from 

Ofcom’s Connected Nation report (2018)105. 

 

LAD level population data was intersected with Postcode/exchange 

boundary areas.  

 

Data for the working population at the LAD level was obtained from 

official labour market statistics106 and Scottish Census data107. This 

was intersected and merged with the boundary areas of the mobile 

macro cells, which were created based on Voronoi decomposition108. 

Water – Network Topology  The best available model was a water resource system model of 

England and Wales (WREW hereafter) developed at the University of 

Oxford for studying water risks and scarcity109. The data from the 

WREW model was modified and adopted for this study.  

 

WREW is the product of an extensive collaboration led by the 

University of Oxford between a range of stakeholders: England and 

Wales's environmental agencies, UK-based water consultancies, the 

Water UK council, and all of England and Wales's water supply 

companies. The water system formulation in the model was based on 

communications with, and datasets provided by, the above 

stakeholders.  

Water – Demand LAD level population census estimates were intersected with WRZs 

(Water Resource Zones) areas, which were then assigned to demand 

nodes based on the allocations of WRZs to specific demand nodes as 

described in the WREW model data. 

Rail – Network Topology  The railways model created for this study relied on a previous study 

we did on vulnerability assessment of Great Britain’s railways110. 

This model has been used in several other peer-reviewed studies111,112  

 

OS Strategi data113 on the locations of all existing 2,564 railways 

station was first collected along with the geospatial information on the 

line geometries of different railway routes in Great Britain.  The line 

geometries showed the single-track routes, which were sufficient for 

this analysis. The OS data gave very accurate geospatial information 

                                                 
103 Ofcom, 2012. Sitefinder [WWW Document]. URL https://www.ofcom.org.uk/phones-telecoms-and-internet/coverage/mobile-
operational-enquiries (accessed 12.21.16). 
104 Oughton, E.J., Frias, Z., Russell, T., Sicker, D., Cleevely, D.D., 2018. Towards 5G: Scenario-based assessment of the future supply and 

demand for mobile telecommunications infrastructure. Technological Forecasting and Social Change 133, 141–155. 
https://doi.org/10.1016/j.techfore.2018.03.016 
105 Ofcom, 2018. Connected nations 2018: UK report. Ofcom, London. 
106 https://www.nomisweb.co.uk/census/2011/workplace_population 
107 https://www.scotlandscensus.gov.uk/news/workplace-population-and-daytime-population-council-areas 
108 Thacker, S., Pant, R., & Hall, J. W. (2017). System-of-systems formulation and disruption analysis for multi-scale critical national 

infrastructures. Reliability Engineering & System Safety, 167, 30-41. 
109 http://www.mariusdroughtproject.org/ 
110 Pant, R. Hall, J.W. and Blainey, S.P. (2016). Vulnerability assessment framework for interdependent critical infrastructures: case study 

for Great Britain’s rail network. EJTIR, 16(1): 174-194, ISSN 1567-7141. 
111 Lamb, R., Garside, P., Pant, R., & Hall, J. W. (2019). A Probabilistic Model of the Economic Risk to Britain's Railway Network from 

Bridge Scour During Floods. Risk Analysis, 39(11), 2457-2478. 
112 Oughton, E. J., Ralph, D., Pant, R., Leverett, E., Copic, J., Thacker, S., ... & Hall, J. W. (2019). Stochastic Counterfactual Risk Analysis 
for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks. Risk Analysis, 39(9), 2012-

2031. 
113 https://www.ordnancesurvey.co.uk/opendatadownload/products.html 
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on the node and route locations, as verified by matching with satellite 

imagery. But this data set has not been updated since 2016, so the new 

railway stations and routes were identified through OpenStreetMap 

data114, to plug the gaps in the OS data. 

Rail – Demand We created a trip assignment model using openly available train 

timetable data115 and annual station-usage statistics from the Office of 

Rail and Road116.  

 

For details of the model see Pant et al. 201638 

Road - Network Topology  The road network topology was derived from the Department for 

Transport (DfT) road traffic statistics data117. 

 

The original DfT data was post-processed to fill all gaps in 

connectivity between road links, and in some instances, this was done 

by also adding ferry links over waterways.  

 

The DfT also produces traffic statistics of vehicle counts by direction 

of travel on roads, which was merged with the spatial network 

topology. 

 

We used the OS Open Roads data118 to identify all major roads with 

tunnels and matched them to our road network for this study.    

Road – Demand  National Trip End Model (NTEM) of the Trip End Model 

Presentation Program (TEMPRO)119. The NTEM provided an OD 

matrix of vehicle trips between 7,000 geographical area zones in 

Great Britain.  

 

Passenger numbers by assuming an average occupancy factor of 1.6 

across all types of vehicles120,121.   

Cross sector dependencies  We had some detailed information on the locations and types of rail 

assets that use other utilities, especially electricity. This was an older 

dataset, that we had created for a previous study38 

Future Energy Networks Topology  Information on locations of future interconnectors was inferred from 

the Aurora data generated for a previous NIC study 122 and other 

sources123.  

 

Data from the Renewable Energy Planning Database (REPD)124 

quarterly extract, updated till September 2019, gave the locations, and 

capacities of planned renewable technologies. 

 

We looked at the plans to build a new Hinkley Point C power plant on 

3.34 GW capacity in the future125,126.  

Future energy - Demand NIC/Aurora projections based on data generated for a previous NIC 

study.127 
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All sectors were allocated new demands in 2050 based on population 

projections at the Local Authority District (LAD) level (380 areas), 

which were downscaled to thee sector specific admin levels and the 

service output areas. The future population projections were based on 

the NIA scenario of high fertility (or high growth)128 which included 

the following assumptions: 

• England - ONS 2014-based high fertility subnational experimental 

projection. 

• Scotland - Scotland Stats 2014-based high fertility subnational 

projection.  

• Wales - Calculated based on ONS 2014-based high fertility 

national projection. 

 

GVA data taken from the Office of National Statistics (ONS), included. 

• Current ONS estimates of GVA in 2017129. 

• Future GVA growth scenario projections for 2050 derived by 

Cambridge Econometrics130 and used for a previous study for the 

NIC131.  

Economic Input-Output data In the UK annual Input-Output tables are generated by the Office of 

National Statistics132,133. 

 

For future economic growth and losses we assumed a GDP growth 

rate of 1.9% for the UK, based on recent studies134. 
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