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1. Executive Summary 
 

The National Infrastructure Commission (the Commission) published the first National 
Infrastructure Assessment (the Assessment) in 2018, in which they recommend targeting a 
transition of the UK electricity system to a highly renewable generation mix, incorporating 
increasing wind and solar power capacities. Transitioning to this highly renewable mix will 
increase the vulnerability of the UK’s electricity system to adverse weather conditions such 
as sustained periods of low wind speeds leading to low wind generation, coupled with cold 
winter temperatures leading to peak electricity demand. Consequently, the Commission 
wants to improve understanding of the impact of adverse weather conditions on a highly 
renewable future system. This will support the recommendations it makes to government 
and provide beneficial inputs to those that model and design future electricity systems.   
 
To improve this understanding, the Met Office have recommended developing a data set of 
adverse weather scenarios, based on physically plausible weather conditions, representing a 
range of possible extreme events, and the effect of future climate change. This will allow for 
proposed future highly renewable electricity systems to be rigorously stress tested to 
ensure resilience to challenging weather and climate conditions. This data set is not 
expected to be a replacement for the current approach of using many years of historical 
weather conditions to optimise the planned electricity system design, but being a set of 
extreme events that can be used as an additional stress test for a specific system design of 
interest.    
 
This report summarises the findings of the Discovery phase of a project to develop these 
adverse weather scenarios for electricity system modelling. It has been completed by the 
Met Office in partnership with the Commission and the Committee on Climate Change 
(CCC). The aim of the Discovery phase has been to investigate the feasibility of producing a 
widely useable extreme weather data set for energy system modelling.  
 
Stakeholder engagement: The project team solicited feedback from a broad cross-section 
of energy system modellers across government, industry and academia to develop 
understanding of the process of energy modelling, limitations associated with the existing 
use of weather data, and identify unmet needs. There was broad consensus amongst those 
who were interviewed or responded to the survey that there was value in developing new 
weather datasets that could be used to assist in designing and testing the resilience of future 
energy systems. In particular, it was identified that modelling teams have no consistent 
methodologies for incorporating how climate change may impact on future renewable energy 
generation and demand. It was also observed that current methodologies, using relatively 
short datasets, are unlikely to capture the extent of plausible extreme events that may have 
a high impact on a future electricity system.  
 
Specification of requirements & project scope: The requirements for the adverse weather 
datasets are summarised, based upon the feedback from the stakeholder engagement. 
These include both long-duration electricity shortfall and surplus events, and short-duration 
electricity generation ramping events. A key challenge, highlighted through the stakeholder 
engagement, was how to define the adverse weather conditions. This is because the 
definition of what constitutes an adverse weather event potentially will change according to 
both future demand and generation capacity mix. In addition, this is a highly 
multidimensional problem, with the extreme event being defined in terms of magnitude, 
spatial extent and duration in time. It is therefore recommended that this key challenge be 
addressed first within the following project phases, with guidance and insights from the 
project advisory and user groups. 
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The datasets developed within this project will not be designed to replace the current 
weather data used for energy system optimisation, and will not provide typical weather years 
for future decades. Rather, they will provide periods of adverse weather conditions for the 
system, with an associated probability and climate-warming level, which can be incorporated 
within a particular system configuration to stress test resilience. For example, to answer 
questions such as: Does this future highly renewable system of interest (e.g. one that has 
been found to be some way optimal in terms of cost and carbon emissions, as identified in 
the Assessment) provide resilient electricity generation able to meet demand during a 1 in 20 
year, long-duration weather stress event, characteristic of a 2 degree warmer world? 
 
Method scoping and feasibility: The key questions to be addressed are: (1) How can 
adverse weather conditions be characterised? (2) Could something worse than that 
observed in the historical period have plausibly happened? (3) How might adverse weather 
change in future climates? A number of possible approaches for addressing these questions 
are explored, their relative strengths and weaknesses identified, and a recommendation on 
the most appropriate method to pursue is made. Each step of the recommended approach is 
then explored in more detail to provide a better understanding of how they would work and 
whether they are computationally feasible. This is achieved based on expert insights from 
relevant scientists and literature, and where relevant, through exploratory data analysis.  
 
Recommendations: For both long- and short-duration stress events a methodology is 
recommended in which the definition of what constitutes an extreme event is initially 
developed. Following this, these definitions are used with relevant sources of meteorological 
data to create datasets of adverse weather scenarios, characterising extreme events of 
various extreme levels, for different regions of Europe, and a range of future climate 
warming levels, based on many years of plausible weather. The resulting datasets could be 
used by energy system modellers to ensure rigorous stress testing of future system designs 
to the effect of weather and climate.   
 
These outputs will build upon the insights of the Met Office literature review (Dawkins, 2019) 
by characterising the five key types for adverse weather stress events, and by producing 
datasets that span the full European domain in a spatially and temporally coherent way. This 
will allow for the exploration of the identified potential opportunities in balancing the energy 
system. The adverse weather datasets created within the project will also help to fill the gaps 
identified by the literature review, by providing events that characterise extremes in the 
summer-time and in solar conditions, by using many more years of plausible weather data to 
better represent climate variability and extremes, and by quantifying the effect of climate 
change on adverse weather conditions.  
 
The value in these datasets would be to increase confidence that future electricity system 
models, used to inform government policy advice and investment decision making, are 
resilient to a range of plausible adverse weather scenarios. The scenarios generated will 
take account of climate change and provide a consistent basis for modelling teams to test 
different aspects of the future electricity systems. 
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2. Introduction 

 

2.1 Context 
 

There is wide agreement that greenhouse gas emissions from the energy sector must be 
reduced if climate change is to be limited to safe levels (IPCC, 2014). Consequently, the 
National Infrastructure Assessment (the Assessment) written by the National Infrastructure 
Commission (the Commission) and published in 2018, included a “Low Cost, Low Carbon” 
chapter, for which an in-depth analysis of the optimal future electricity system was 
commissioned from Aurora Energy Research. This work has subsequently been updated to 
reflect the government’s updated ambition to meet a net zero emissions target by 20501. The 
analysis indicated that whole system costs would be broadly similar for an energy mix of 
relatively low renewable generation (40% in 2050) compared to a very highly renewable mix 
(90% in 2050). As a result, in order to keep open the option of a highly renewable generation 
mix, the Commission recommended targeting 50% renewable electricity generation by 
2030. Further, the Committee on Climate Change is currently working on the Sixth Carbon 
Budget2, which will explore futures with a minimum of 60% renewables, and other scenarios 
with very high levels of renewables (70%-90%). 

 
An electricity system with an increasing renewable mix will become increasingly sensitive to 
the weather. For example, an electricity system that is highly dependent on wind power 
during winter may encounter challenges during extended periods (multiple days) of very cold 
(high demand) and still (low wind power supply) meteorological conditions. The future highly 
renewable electricity system must therefore be designed with the renewable mix, flexible 
generation, storage, and smart energy technologies required to ensure demand can be met 
for a range of plausible meteorological scenarios. Accordingly, within the Assessment, the 
Commission acknowledge the importance of developing a better understanding of how a 
highly renewable electricity system will perform under adverse weather conditions, and 
hence commissioned the Met Office to complete a review of literature relevant to this topic 
(Dawkins, 2019).  
 
This literature review highlighted how extreme meteorological stress on the electricity system 
can be broadly characterised in five ways: winter-time peak residual demand (demand net of 
renewable supply); summer-time wind drought, coincident with high cooling demand; wind 
power ramping (large fluctuations in power generation in a short time window); solar 
photovoltaic (PV) ramping; and summer-time surplus renewable generation, coincident with 
low demand. The reviewed studies indicated a number of electricity system resilience 
opportunities associated with utilising the spatial and temporal variability as well as the 
dependence between relevant meteorological conditions. For example, the dipole in 
meteorological conditions in North and South Europe, the anti-correlation between wind 
speed and solar irradiance in the UK, particularly in summer could all act to improve 
electricity system resilience. The literature review also highlighted the link between relevant 
meteorological conditions and large-scale modes of climate variability (such as the North 
Atlantic Oscillation). In addition, climate change studies were shown to indicate, with high 
confidence, that the UK climate will become increasingly warm under all representative 
concentration pathways, and that a long historical period of meteorological data is required 
to represent natural climate variability.   

                                                           
1 https://www.nic.org.uk/wp-content/uploads/Net-Zero-6-March-2020.pdf (Accessed 17/04/2020) 
2 https://www.theccc.org.uk/2019/10/17/ccc-to-publish-sixth-carbon-budget-in-september-2020/ (Accessed 
17/04/2020) 

https://www.nic.org.uk/wp-content/uploads/Net-Zero-6-March-2020.pdf
https://www.theccc.org.uk/2019/10/17/ccc-to-publish-sixth-carbon-budget-in-september-2020/
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A number of gaps in current understanding were, however, also identified including the 
under representation of summer-time electricity system stress (which may become more 
severe in a warming climate due to an expected uptake in air conditioning), and the absence 
of solar irradiance and climate change in many electricity system resilience studies. Further, 
all reviewed resilience studies were shown to be based on a limited historical period of 
meteorological data which may not include all plausible extreme conditions. 
   
Further research is therefore required to address these gaps in current understanding and 
comprehensively test the resilience of a future highly renewable electricity system to extreme 
meteorological conditions. Specifically, this resilience must be tested against a range of 
extreme meteorological stress events, at many plausible extreme levels (beyond those 
observed in the recent historical period), whilst also accounting for climate variability and 
climate change. 
 
As recommended within the literature review, these gaps could be addressed by creating a 
set of electricity system relevant, extreme meteorological stress scenarios. These created 
scenarios could then be incorporated within energy system models, such as that developed 
by (Staffell & Pfenninger, 2018), and hence be used to identify the optimal future system in 
terms of cost and carbon emissions, that is also resilient to future extreme weather in a 
changing climate.  
 

Following completion of the literature review, the Commission decided to pursue a project 

exploring the feasibility of developing these extreme weather scenarios for future electricity 

system testing. This report summarises this project – the Discovery phase. 

 

2.2 Objective and outcomes of project 
 

The overall objective of the project is: To provide a widely usable data set of adverse 

meteorological conditions, characteristic of a range of electricity system extreme stress 

scenarios, in current and future climates, at various relevant extreme levels. The scenarios 

included within this data set will be informed by the initial Discovery phase.  

This report summarises the outputs of the Discovery phase of the project. The aim and 

outputs of this phase are as follows: 

 

Aim: Investigate the feasibility of producing a widely useable extreme weather data set. This 

will involve exploring the current use of weather scenarios within existing energy models and 

assessing the feasibility of the proposed model methodology.  

Outputs: This report summarising user surveys, exploratory data assessment and model 

methodology evaluation. The work will also produce a final scope for phases two and three 

of the project. 
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2.3 Discovery Methodology 
 

The Discovery phase has been undertaken jointly between the Commission and the Met 
Office team, with additional input from the Committee on Climate Change. The purpose of 
the Discovery phase was to engage with stakeholders, refine the team’s knowledge of the 
problem, and more fully define the outputs of the project. This phase builds directly upon the 
literature review that was completed in 2019.   
  
Specific questions that the Discovery phase has focussed on include:  
 

 Who will the proposed datasets be targeted at?  
 How will the data be used to inform future electricity systems modelling?   
 How will it create value as an authoritative dataset?  
 How will the data be made available to people and managed on an ongoing 

basis, and in what format?  
 How should stress events be characterised?  

 Spatial extent  
 Duration  
 Maximum/minimum temperature  
 Wind speed characteristics  

 What will be the spatial and temporal resolution of the data?  
 How extreme should the meteorological events be?  

  

Stakeholder engagement   
 

The Met Office worked with Commission and CCC project team members to design an initial 
qualitative questionnaire. This defined the questions to be answered through the Discovery 
phase in order to develop our understanding of the problem, clarify needs, and define the 
follow on project. Key stakeholders from across the energy modelling community were 
identified as targets for initial interviews. 
 
The Met Office team then met face to face with a number of these stakeholders. 
Representatives from the following stakeholder organisations were interviewed: 
 

 Department for Business, Energy and Industrial Strategy (BEIS) energy team 

 Energy Systems Catapult 

 Commercial energy modellers – Aurora and AFRY (formerly Poyry) 

 Academic teams at Imperial College London and University College London 
 
Based upon feedback from this initial phase, the questionnaire was revised and made 
available to the wider community of electricity system modellers across the UK. Additional 
responses were received following direct emails to known contacts within key organisations 
and by contacting the wider community of energy modellers through the Power Swarm web 
channel3. Following this second phase of engagement, the team received further feedback 
from the following organisations: 
 

 National Grid 

 University of Reading  

 University of Strathclyde  

 Imperial College London 

                                                           
3 http://powerswarm.co.uk/ (Accessed 27/04/2020) 

http://powerswarm.co.uk/
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 EDF Energy 

 Bristol Energy 

Model feasibility assessment   
 

A number of possible approaches and relevant data sets are available for addressing the 

needs of this project, as informed by the stakeholder engagement. This part of the Discovery 

phase firstly aimed to explore these possible approaches, identify their relative strengths and 

weaknesses, and make a recommendation on the most appropriate method to pursue. 

Following this, each step of the recommended approach was explored in more detail to 

provide a better understanding of how the methods would work and their computational 

feasibility. This was achieved based on expert insights from relevant scientists and literature, 

and where relevant, exploratory data analysis. 

  
Discovery user group workshop, report and revised project proposal  
A user group workshop was held on 20 March 2020. The findings from the Discovery phase 
were presented back to the broader user and stakeholder group. At this meeting the user 
group discussed the findings and priorities for the next phases of the project.   
 
This Discovery report has been drafted following the user group session. Following 
acceptance of this report by the Commission and the project advisory group, the Met Office 
will draft a revised proposal for the delivery phases of the project. 
 

Project advisory group  
An advisory group has been established by the Commission to act as advisors for this 
project and to guide the work completed to make sure that it delivers to agreed outcomes.  
  
The advisory group has membership from the following organisations: 
 

 National Infrastructure Commission (Chair) 

 Committee on Climate Change 

 BEIS 

 Energy Systems Catapult 

 University College London 

 Ofgem 

 Met Office project team members 
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3. Stakeholder engagement 
 

3.1 Energy system modelling 
 

Why model the future electricity system? 

The project team interviewed a cross-section of energy modellers who are focussed on 

different aspects of the electricity system. The main themes on the value of energy modelling 

are summarised in the table below. These themes are characteristic of the Energy Trilemma 

of sustainability, equity (keeping the system affording and prices down) and security 

(resilience). 

Transition to a low 
carbon economy 

To build understanding of how the UK electricity system can 
transition to net zero carbon by 2050 and identify the 
pathways in terms of generation mix, storage and flexibility on 
the system in order to get there. 
 

Economic business 
case 

To identify the business case for investment and understand 
profitability of generation, storage, transmission and flexibility 
infrastructure.  
 

Financial sustainability  To evaluate future energy prices to try and optimise energy 
mix, storage and flexibility to ensure a sustainable market. 
 

Resilience of electricity 
system 

To ensure that the electricity system remains resilient to 
changing patterns of demand and increasing variability in 
generation capacity. 
 

 

What is modelled? 

The groups surveyed identified three broad stages of electricity system modelling that are 

undertaken. These are: 

i. Demand modelling 

ii. Capacity planning 

iii. Generation modelling 

Figure 1 broadly illustrates how these three stages of modelling fit together in a value chain. 

Note that some groups combine some of these stages in their work and Figure 1 is only 

intended as an indicative illustration of the approach.  

Demand models are set up to predict future energy demand. For example, heat models 

predict the component of future energy demand that is associated with heating 

requirements. This combines projections of energy supply and emissions with temperature 

data. These models incorporate potential policy decisions, such as whether to support 

electric heat pumps and/or hydrogen to meet future domestic heating need, and take 

account of timescales for decarbonisation of the heating system, to help quantify impacts on 

overall energy demand. 
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The outputs of the demand models are used to inform the Capacity Planning stage. This 

stage also takes account of policy decisions relating to the future energy mix as well as the 

projected costs associated with generation, storage and system flexibility. The output of the 

capacity planning stage is an understanding of potential future energy generation capacity 

as well as an idea of its spatial distribution. 

The future capacity mix is then an input into generation dispatch stage which determines 

the hour by hour (or half hour) generation mix, i.e. to determine which generation plant will 

dispatch each hour for a future scenario. High resolution weather data is a key input into this 

stage of the modelling process as it determines both the heating demand and also the 

variability of wind and solar generation.  

By understanding the hourly generation mix, energy modellers are also able to derive energy 

prices, likely emissions, how much transmission is required across the system and how 

much margin there is (generation net demand). These factors can be used to understand 

more about the future resilience of the electricity system for a given capacity mix. 

Some groups combine the last two stages in the value chain (capacity planning and 

generation dispatch) in optimisation models. This is an iterative process that allows parts of 

the capacity mix to be varied in order to optimise outputs for a given set of input data. These 

types of modelling frameworks help to factor in the intermittency associated with variable 

renewable energy generation for planning decision making. 

 

Figure 1 Indicative electricity system modelling value chain 

Energy system models are configured in different ways depending on whether the focus of 

the work is on planning of a new capacity mix, or on testing a certain configuration of energy 

system under operational constraints. When using energy models for planning, the aim is to 

test the performance of various mixes of generation capacity. These models will typically not 

capture the level of technical detail, or temporal and spatial resolution, that might be tested 

through a more operationally focused model. In these the capacity mix and other planning 
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assumptions are fixed which means that the models can be operated at higher resolutions 

and contain more technical details about the responses of the system to the changing input 

data. 

One of the key differences between planning and operational model types is that planning 

models assume perfect foresight in terms of the weather that is going to be happening for 

the rest of the year; whereas as an operational type model will only see the weather a few 

days ahead. 

3.2 How is weather information currently being used? 
 

What types of weather data are used? 

There is a lot of commonality in the ways and types of weather information that is currently 

being used by the energy modelling teams that were surveyed. Most of the teams used 

weather model reanalysis data as the primary input into their models. A reanalysis is when 

past observation data is assimilated into weather forecast models to produce a gridded 

dataset of past weather conditions. There are two main datasets that are used, the ERA5 

dataset from the European Centre for Medium range Forecasting (ECMWF) and MERRA 

which is produced by NASA. The horizontal resolution of the ERA5 data is approximately 

31km at mid-latitudes (0.25°), MERRA is slightly coarser. These datasets have an hourly 

temporal resolution. 

Some modellers also use additional satellite based observations to provide solar radiation 

data as this is not well resolved in the data made available through ERA5. 

One academic team has used climate model data to drive electricity system models. Some 

teams have also incorporated uplifts in degree-days due to climate change. Degree days are 

used to determine the number of days when heating of buildings would be required.  

 

Which weather parameters are ingested into models? 

The key weather parameters that electricity system modellers are using from these datasets 

include: 

i. Wind at height (near surface) 

ii. Temperature (at 2 metres) 

iii. Solar irradiance (direct and diffuse)  

iv. Humidity (generally of secondary importance) 

Snow fall, lying snow, rainfall run off and stream flow were also identified as important when 

teams are looking at inputs from hydro-generation. A few groups are also interested in tidal 

and wave information. A much wider set of data is used by some of the academic groups 

who analyse variables such as large scale weather patterns, pressure fields and high level 

winds to improve the inference of weather conditions. 

 

How is weather data selected? 

How weather data is currently selected varies greatly according to the type of modelling that 

a group is undertaking. Many groups will use the past five, or ten, available weather years as 
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the basis for their modelling. Others have the computing capacity to run their models with 

much larger datasets and use the full 30+ year ERA5 dataset4 as the basis for their analysis. 

It has been noted, however, that in some cases energy modellers use just one year of 

weather data.  

Usually groups use at least one year of data at a time to drive their models and use different 

past weather years to test future combinations of energy demand and generation mix. Some 

modelling groups use more sophisticated techniques such as creating hundreds of 

thousands of Monte Carlo simulations from the available datasets to help explore more 

extreme scenarios. 

 

What are the most important weather stress events? 

Most of the electricity system modellers that responded to the questionnaire identified winter-

time peak residual demand events as the highest priority weather stress event that 

concerned them with respect to the resilience of the future electricity system. These occur 

when blocking high conditions lead to extended periods of low wind speeds across a spatial 

domain of the UK and north-west Europe coupled with cold weather conditions. These 

events can last several days. 

A number of the teams were also concerned about the emerging importance of summer-time 

wind droughts. These occur when blocking high conditions give rise to low wind speeds 

coupled with very high temperatures. These are likely to become more important if 

increasing number of heatwave conditions across the UK give rise to much more widespread 

uptake of cooling. It is possible that the increasing amounts of solar generation could in part 

offset this need.  

Other types of longer duration events that were also highlighted included: extended periods 

of surplus renewables generation; and periods of low water resources and associated impact 

on hydro generation. 

The most important shorter duration events identified were wind and solar ramping events 

that cause sudden and widespread variations in electricity generation. For example during 

wind storms, turbines typically cut out when wind speeds exceed 25m/s and this can cause 

sudden fluctuations in generation. Other forms of short duration events on the system that 

were highlighted included lightning strikes causing temporary outages to parts of the system. 

Short duration events were considered to be less significant than longer duration events by 

those involved in this stakeholder engagement, as short-term storage and smart techniques 

to manage short duration fluctuations in supply are becoming increasingly available on 

energy systems.  

Overall the most important phenomena were thought to be winter and summer wind 

droughts. Other events were thought to be less critical to system resilience. 

A number of the respondents identified that they don’t explicitly try to identify stress periods 

at all in their modelling. In a sense they are working the other way around, i.e. they are 

trialling future scenarios of energy capacity mix and demand and these combinations 

determine the sensitivities to weather conditions. This is a reflection of the multi-dimensional 

nature of the problem. For example, a winter peak residual demand event is defined both by 

the low wind speeds, which result in reduced generation, and low temperatures, which result 

                                                           
4 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (Accessed 05/03/2020) 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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in increased demand. As you increase the amounts of wind generation on the system, what 

constitutes a peak event becomes more dominated by the low wind speeds and less by high 

demand. Conversely, if the amounts of electric heating on the system increases, then the 

low temperatures become more important to the definition of a peak event.  

 

How changes to weather conditions resulting from climate change are 

incorporated into electricity system modelling? 

The vast majority of respondents indicated that climate change has not been coherently 

incorporated into their modelling, although one of the academic groups is exploring how 

climate projections could be used to achieve this. The energy scenarios that are being tested 

are largely driven by the need to transition to a lower carbon economy, but the weather data 

being used to test these scenarios reflects past observed conditions. Some of the groups 

identified that mean uplifts in temperatures due to climate change were incorporated into 

calculations of degree-days which are used to calculate heating demand. 

Almost all of the survey participants identified that being able to use data that was 

representative of future climate as something that they thought was important to do. 

 

3.3 Limitations of current approach to using weather data 
 

Whilst the current approaches used by the teams that were interviewed make the best use of 
the weather data that is currently available, the following limitations in the current approach 
were identified:  
 

 There is no clear definition of what constitutes adverse weather conditions (either in 
terms of return period, or severity, spatial distribution or timescale) 

 Data selected is assumed to represent the current and future variability and extremes 
adverse conditions  

 None of the current methodologies fully represent changes to adverse weather 
conditions that may result from climate change 

 There is no consistency in the methods used to select weather data which means 
that different modelling groups could get quite different answers to similar questions 
about future system resilience. 
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4. Specification of Requirements & Project Scope 

 

4.1 Considerations for adverse weather dataset 
 

Through the engagement with the energy modelling community there is widespread support 

for a project to develop some additional weather datasets to inform future electricity system 

modelling.  

The key question that needs to be addressed is how to ensure that datasets produced are 

representative of adverse weather, relevant for future highly renewable electricity systems. 

This is because the definition of what constitutes an extreme event may change according to 

the amount, types and distribution of renewable generation and storage; as well as the 

expected demand profiles. There are a couple of ways that this could be addressed:  

i. Provide datasets for thousands of years’ worth of data and run energy models for 

all of them. For most groups we spoke to this would be impractical given the data 

volumes involved. 

ii. Develop a method for identifying periods of adverse weather for the electricity 

system from meteorological data sets, relevant for a range of possible future 

system configurations. This could be achieved by developing a set of stress 

event indices (one for each type of adverse weather event) based on weather 

conditions in each location and their potential for creating electricity demand and 

generation, using relationships as in (Bett & Thornton, 2016) and the expertise 

and insights of the project advisory and user groups. This approach is similar to 

that used to develop other weather impact indices, such as the heat wave 

severity index derived by (Nairn & Fawcett, 2015), and the hydrological drought 

indices currently used by the Met Office to better understand UK water resource 

management. 

It is suggested that the second option is the most pragmatic, particularly as the focus in this 

project is on resilience and stress testing future electricity system designs to understand 

whether they are resilient to adverse weather conditions.  

Linked in with this problem, there are also questions around how extreme the adverse 

weather scenarios that are selected should be. 1 in 20 year events are generally agreed to 

be an industry standard that systems are designed towards. It is also suggested that this is 

supplemented with datasets representative of 1 in 5 year and 1 in 2 year extreme events to 

represent less extreme conditions. This would allow sensitivity testing of the electricity 

system to different extreme levels to be conducted. 

 

4.2 Value in adverse weather datasets 
 

The respondents to the questionnaire identified the value in the adverse weather datasets as 

follows: 

- Consistency: A defined way of identifying adverse weather and a set of adverse 

weather scenarios would enable the robustness of different elements of the future 

electricity system to be tested in a more consistent and coherent way. 
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- Representing extreme events: Greater confidence that data used in modelling is 

representative of climate variability. Using historical data alone may not capture 

plausible extreme events that could be high impact in terms of the resilience of the 

future electricity system – especially in a changing climate. 

- Climate Change: Ability to account for climate change in the design of future electricity 

system by creating weather data that is representative of expected conditions during 

the operation of the future electricity system. 

 

4.3 Table of requirements 
 

The table below is a summary of the specification of requirements for the adverse weather 

data to support future electricity system modelling. 

Spatial domain Europe-wide to enable the value of interconnectors across Europe 
on resilience of UK electricity system to be assessed. 
 

Spatial 
Resolution 

~30km in line with the ERA5 datasets currently used 

Duration of 
datasets 

At least 1-year duration data sets to capture longer duration peak 
demand events such as wind and solar droughts. This makes sure 
that effectiveness of storage on system can be assessed. 
 
Datasets of a few days or weeks duration will be sufficient to capture 
the shorter duration events such as ramping. 
 

Temporal 
resolution 

Hourly (or half hourly) datasets required for longer duration events. 
 
Higher frequency data may be required to assess short duration 
ramping events. 
 

Weather 
parameters 

Most important parameters highlighted by all survey respondents 
i. Wind at hub height 
ii. Temperature 
iii. Solar irradiance (Direct and diffuse) 

 
Secondary parameters highlighted by some respondents: 

iv. Humidity 
v. Rainfall and run-off (important for hydro) 
vi. Tidal and wave data (might become more important in the 

future) 
 

Stress scenarios 
that are most 
important 

The following types of stress events were identified as priorities by 
those interviewed in the following order: 

i. Long duration winter peak residual demand event. This 
is a sustained period of low wind speeds over UK and NW 
Europe coupled with cold temperatures (high heating 
demand). 

ii. Long duration summer wind drought. This is a 
sustained period of low wind speeds over the UK and NW 
Europe coupled with high temperatures (high cooling 
demand). 
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iii. Surplus renewable generation (particularly solar). 
Sustained periods where renewable generation from wind 
and/or solar outstrips demand. 

iv. Ramping events. Sudden and widespread fluctuations in 
renewable energy resource. This could occur during a 
wind storm when turbines cut out when wind speeds 
exceed 25m/s; or when the onset of cloudy conditions give 
rise to sudden reduction in solar generation. 
 

Critical 
thresholds 

There are no critical thresholds defined for the stress events 
identified. This is because the stress events are defined by the 
expected combinations of generation capacity mix as well as future 
demand profiles.  
 
It is suggested that the project team work with the qualitative 
guidance of the expert energy system modellers in the advisory and 
user groups to develop an approach for defining adverse stress 
events in terms of meteorological extremes, relevant to a range of 
future electricity systems. 
 
System operators are trying to maintain system resilience to 1 in 20 
year events – this is a standard across the industry. It is also 
suggested that these are supplemented with 1 in 5 year and 1 in 2 
year adverse events. This would allow users to conduct sensitivity 
testing to various extreme levels. 
 

Climate change 
planning 
horizons 

Datasets should be representative of today’s climate (2020s) and of 
the 2050s. The significance of the 2050s timescale is that it aligns 
with policy targets for the UK achieving net zero. Some groups, 
including National Grid, are also forward planning towards the 2070s. 
 
The suggested way of specifying the requirement would be to 
generate the stress scenarios based upon different warming levels 
(e.g. 2°C and 4°C of global warming beyond preindustrial levels). 
These warming levels can then be associated with different decades 
along different radiative concentration pathways5. The advantage of 
taking this approach is that it disaggregates the datasets from 
uncertainty around future carbon emissions and climate sensitivity. 
Specifically 1.5, 2, 3 and 4°C warming levels are of primary interest. 
 

Data formats 
and access 

NetCDF is a standard data format that is widely used. 
 
Some groups import data as CSV files, so it may be useful to have 
some data accessible in this format. 
 
The datasets should be made accessible through some kind of web 
portal or API (there are several existing platforms that could be used). 

 

                                                           
5 see Tables 2 and 3 in the UKCP18 Derived Projections of Future Climate over the UK report: 
https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Derived-Projections-of-
Future-Climate-over-the-UK.pdf (Accessed 16/04/2020) 

https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Derived-Projections-of-Future-Climate-over-the-UK.pdf
https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Derived-Projections-of-Future-Climate-over-the-UK.pdf
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4.5 Project Scope 
 

The datasets developed within this project are intended to be a set of extreme adverse 

weather events, characteristic of physically plausibly meteorological conditions that can be 

used to as an additional stress test for future electricity system planning. They are not 

intended to replace the current energy modelling approach for electricity system 

optimisation, of using many years of reanalysis to identify the best solution in terms of cost 

and carbon emissions. Hence, this data set of adverse weather scenarios will primarily 

address the fourth key energy modelling themes in the table in Section 3.1 (resilience of 

electricity system), but will also help to stress test the energy model planning related to the 

other three themes (transition to a low carbon economy, economic business case and 

financial sustainability).  

Specifically, these datasets will help to answer questions such as:  
 

 Does this future highly renewable system of interest (e.g. one that has been found to 
be some way optimal in terms of cost and carbon emissions, as identified in the 
Assessment) provide resilient electricity generation able to meet demand during a 1 
in 20 year long-duration weather stress event, characteristic of a 2 degree warmer 
world? 

 To what extent could an additional European interconnector improve resilience to a 1 
in 5 year summer wind drought extending across NW Europe, given reliance on wind 
generation in other parts of Europe? 

 What is the impact of surplus summer solar generation on network resilience during a 
1 in 20 year event in today’s climate? 

 

A typical weather year for future decades will not be provided as part of this project, however 

1 in 2 and 1 in 5 year return level adverse weather events will be included within the dataset 

to represent the more typical types of events that may be experienced in future climates.  

The proposed methodology for creating these adverse weather stress events, representative 

of future climates, uses future climate projections in combination with extended datasets of 

plausible historical weather years. The resulting events will therefore characterise both a 

comprehensive representation of climate variability and extremes (based on the many years 

of plausible historical weather), as well as the effect of climate change (based on the climate 

projections). This could not be achieved by using climate projections only. 

 
 
 
 

 

  



 
 
 

Page 18 of 57 
© Crown copyright 2020, Met Office 

5. Method Scoping & Feasibility Study 
 

Within this section, a methodology for addressing the identified key questions and values of 

the project will be scoped and assessed for computational feasibility. The aim is to provide a 

widely usable data set of adverse meteorological conditions, contained within whole years of 

gridded temperature, wind speed and solar irradiance at the same spatial-temporal 

resolution as gridded reanalysis data, characteristic of a range of electricity system extreme 

stress scenarios, in current and future climates, at various relevant extreme levels.  

Firstly, the definition of what constitutes an ‘adverse weather event’ must be explored and 

derived. Following this, periods of adverse weather during the historical period of 

meteorological records (1979-present) can be identified and contextualized. However, in 

using this limited historical period of observed weather information only, more extreme 

scenarios that could have plausibly occurred during the historical period, are not captured. 

Further, this forty year record is not long enough to comprehensively represent a 1 in 20 

year return level. In addition, this historical period of weather is not representative of the 

possible future climate, for which electricity system is being planned for (e.g. 2050 onwards). 

The latest UK climate change projections (UKCP18) indicate that UK temperatures will 

continue to rise in the 21st century. This will likely have an impact on UK electricity demand 

in both winter and summer, and is not captured by the historical period of weather.  

The scoped methodology must therefore address three key questions: 

1. How can adverse weather events be characterised using meteorological 
information?  
 

2. Could something worse than that observed in the historical period have 
plausibly happened? 
 

3. How might these adverse conditions change in future climates? 

Stakeholder engagement identified that long-duration (>7 days) wind/solar drought events, 

which characterise prolonged periods of low energy generation and could also coincide with 

high energy demand, are of key interest. As such, the first sections of this report focus on a 

method for representing this type of event. In Section 5.3 the initial scoping of a further 

project phase for representing short-duration ramping events is presented. 

Method scoping has involved discussions with a number of relevant experts within the Met 

Office: 

 Hazel Thornton and Philip Bett, Science Manager and Senior Scientist in the Met 

Office Climate Adaptation group, experts in the relationship between weather and 

energy demand/generation;  

 Joana Mendes, Senior Scientific Consultant in the Met Office Industry Consultancy 

group, expert in using meteorological information to inform the solar energy industry; 

 Simon Brown, Science Manager for the Met Office Climate Extremes group, expert in 

how meteorological extremes may change in future climates; 

 Theo Economou, Senior Lecturer in Statistics at the University of Exeter and Met 

Office statistical advisor, expert in environmental statistical modelling; 

 Nick Dunstone, Science Manager of the Met Office Climate Dynamics group, expert 

in inter-annual to decadal climate prediction and variability; 
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 Jason Lowe and Fai Fung, Head of Climate Knowledge Integration and Mitigation 

Advice, and Climate Services Manager at the Met Office, experts in climate 

modelling, climate change and UKCP18; 

 Dan Bernie, Science Manager of the Met Office UK Climate Resilience team, expert 

in climate resilience, risk and mitigation;  

Additionally, comments and advice from the project user group and advisory group have 

been incorporated. The depth and breadth of knowledge belonging to these experts has 

ensured a rigorously thought through methodology which, following the successful 

achievement of each stage, will meet the goals of the project. 

 

5.1. Method Scoping: Long-duration Events 
 

Within the following section, we describe a number of possible approaches and available 

relevant data sets, highlighting their strengths and weaknesses. We then make a 

recommendation of the method expected to provide the best results, and the required 

methodological steps. 

 

5.1.1. Available data sets, their benefits and limitations  
 

To achieve the goals of the project and produce a set of representative electricity system 

relevant adverse weather scenarios contained within whole years of gridded temperature, 

wind speed and solar irradiance, one or more relevant meteorological datasets must be 

identified. 

There are a number of potential sources of meteorological data, each with its own strengths 

and weaknesses in relation to the desired output of this project. In particular, how 

appropriate each data set is for deriving the definition of an ‘adverse weather event’, how 

well they are able to capture plausible scenarios more extreme than those observed in the 

historical period, and the effect of climate change on the relevant meteorological variables 

and scenarios (i.e. the three key questions posed at the beginning of Section 5).  

Reanalysis Data 

Meteorological reanalysis6 data sets, such as ERA57, are the gridded weather data 

commonly used by energy modellers. These datasets are available at spatial resolutions of 

up to approximately 30 x 30 km and temporal resolutions of up to one hour, for the period 

1979 to present day (i.e. currently for the last 40 years). 

This type of data set is a gridded representation of the weather that has been observed over 

the historical period. As such, the meteorological conditions at each location can be related 

directly to historical energy generation and demand information to inform the development of 

the definition of the adverse weather stress event indices. Hence, reanalysis data is relevant 

for addressing key question 1. 

                                                           
6 https://www.ecmwf.int/en/research/climate-reanalysis (Accessed 02/03/2020) 
7 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (Accessed 05/03/2020) 

https://www.ecmwf.int/en/research/climate-reanalysis
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Once an approach for identifying adverse weather events has been developed, such events 

could be identified within these reanalysis data sets already currently used by electricity 

system modellers. This would help to give context to challenging periods of weather for a 

renewable electricity system within the last 40 years, and would increase the range of 

weather information for those energy modellers who currently use only 5-10 years of data. 

This approach would, however, still limit the set of extreme weather scenarios to only 

represent those that occurred in the historical period, and would not characterise the effect 

of climate change. Hence, this approach would not address key questions 2 and 3. It 

therefore remains to identify possible meteorological data sets that could be used to address 

these two further key questions. 

Weather Generator Simulations 

Synthetic weather can be simulated using a statistical/data-science model, developed to 

represent the spatial-temporal behaviour of relevant weather variables. This method is often 

referred to as a weather generator8. This approach is common in the fields of hydrology and 

water resource management, and examples of such models include (Jones, et al., 2010), 

(Serinaldi & Kilsby, 2012)  and (Stoner & Economou, 2020). This type of approach was 

initially proposed for this project as, once the data science model has been fitted (and 

validated), many thousands of years of synthetic weather can be generated relatively 

computationally quickly (compared to a complex physical weather/climate model such as the 

Met Office's HadGEM39). In being able to generate so many years of synthetic weather, this 

approach would be able represent adverse weather scenarios not captured within the 

observed period. In addition, methods exist for incorporating the effect of climate change on 

the meteorological variable simulated from the model (Brown, et al., 2014). This approach 

could therefore be used address key questions 2 and 3.  

Statistical weather generator models are, however, not constrained by the physical 

equations of the atmosphere (unlike physical climate/weather models) and may therefore 

simulate synthetic weather that is not physically plausible. In addition, fitting/training such 

models is extremely computationally expensive, particularly with the level of complexity 

required to capture multiple hourly weather variables accurately at a high spatial resolution, 

as required for this project. This was demonstrated in a recent project carried out by the Met 

Office within the water industry, for which a weather generator model was developed to 

simulate daily rainfall at three sites in the UK. This model took 2 months to develop and 

fit/train to these three sites. Scaling this weather generator up to model three meteorological 

variables (temperature, wind speed and solar irradiance) rather than just one, at an hourly 

temporal resolution rather than daily, and at a 30 km resolution over all of Europe (more than 

300,000 grid cells) rather than at 3 locations, would therefore be computationally infeasible.  

Hindcast (Retrospective Forecast) Data 

An alternative approach for creating synthetic weather is to make use the large ensembles of 

coupled model runs used in seasonal and decadal climate prediction. These datasets 

represent plausible `alternative realities' to what was actually observed over the last 

decades. Such data sets are often referred to as hindcasts, and one such data set has been 

created using the Met Office Decadal Climate Prediction System, known as DePreSys 

(Dunstone, et al., 2016). This system uses a global ocean-atmosphere coupled climate 

                                                           
8 https://www.ipcc-data.org/guidelines/pages/weather_generators.html (Accessed 13/03/2020) 
9 https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadgem3 
(Accessed 03/03/2020) 

https://www.ipcc-data.org/guidelines/pages/weather_generators.html
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadgem3


 
 
 

Page 21 of 57 
© Crown copyright 2020, Met Office 

model, and has been run 40 times for each year during the period 1959-2015. The model is 

initialised each November with atmospheric, oceanic, and sea-ice observational data, as well 

as historical anthropogenic and natural climate forcings. Therefore, the DePreSys data set 

consists of 40 ensemble members (alternative realities) of the 57 year historical period, 

equivalent to 2280 model years of plausible weather, representative of historical climate 

conditions.  

 

 

Figure 2: Taken from (Thompson, et al., 2018), Unprecedented monthly rainfall in all winter months. South east 
England monthly rainfall totals from observations (grey) and the model (red) for October to March. The box 
represents the interquartile range and the range of the whiskers represents the minimum and maximum monthly 
rainfall totals. Red dots indicate model months with greater total rainfall than has yet been observed and ticks on 
the upper observations line indicate values in the upper quartile of events. For January the ticks on the model line 
indicate months above the observed record prior to 2014 and the grey dot above the observations indicates the 
record observed monthly rainfall of January 2014 

DePreSys has recently been used as a tool for exploring extreme, unprecedented 

meteorological events (Thompson, et al., 2018) following the UNprecedented Simulated 

Extremes using ENsembles (UNSEEN) method. This method uses the large ensemble of 

simulations from the DePreSys hindcasts to identify and characterise `black swan' events 

more extreme than those in the observational record, as demonstrated in Figure 2. A similar 

approach could be attempted to identify and extract extreme, unprecedented events relevant 

for renewable electricity system stress testing. This set of events would be representative of 

many more years of weather than the historical period alone, and would hence address key 

question 2 posed at the beginning of Section 5. In addition, climate models are constrained 

by the physical equations of the atmosphere, and hence simulations will retain physical 

plausibility.  

The purpose of the DePreSys system is to forecast from several months ahead to several 

years. For this purpose it is designed to represent climate variability, which in turn is 

essential for capturing a range of plausible scenarios. Some aspects of the system that 

promote good representation of climate variability are: a resolved stratosphere10 and high 

spatial resolution in the atmosphere and ocean. These aspects have been shown to lead to 

improvements in the representation of synoptic weather patterns, such as cyclonic storms 

and blocking highs, which are associated with wind droughts (Williams, 2015).  

                                                           
10 https://www.metoffice.gov.uk/research/climate/earth-system-science/stratosphere (Accessed on 03/03/2020) 

https://www.metoffice.gov.uk/research/climate/earth-system-science/stratosphere
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This higher spatial resolution is, however, nominally lower than the resolution of the latest 

generation of reanalysis data sets currently used by electricity system modellers 

(approximately 30 km). In addition, the DePreSys data set provides only temperature, wind 

speed, wind direction and mean sea level pressure (mslp) at a daily temporal resolution. 

This means that the hourly variability in each relevant meteorological variable, as is required 

for electricity system modelling, is not characterised, and no solar irradiance information is 

available. If used, this data set would therefore require a downscaling11 step to achieve the 

desired spatial-temporal resolution, and a representation of solar irradiance. Finally, the 

DePreSys hindcasts are representative of the historical period only, and therefore do not 

characterise the effect of climate change. Using this data set would therefore require an 

additional exploration and quantification of the effect of climate change in order to address 

key question 3 in Section 5. 

Climate Model Experiment Data 

Following a similar method to that used to create a hindcast data set (as described above), a 

recent climate model experiment carried out by scientists in the Netherlands (Wiel, et al., 

2019), used a global climate model to not only simulate multiple realisations of a historical 

period (in their case 2000 years characteristic of 2011-2015) but also for a future climate 

(2000 years characteristic of pre-industrial conditions + 2oC warming). Using this data set to 

characterise extreme adverse weather events would, in a similar way to the hindcast data, 

address key question 2 in Section 5 due to the extended length of the period being 

represented (2000 years). In addition, the data set has some consideration of the effect of 

climate change, and hence also goes some way in addressing key question 3.  

This climate model experiment was, however, carried out using a climate model with a 

relatively low spatial resolution of 100 x 100 km. This means that the higher resolution 

advantages described in the previous section in relation to the DePreSys climate model are 

not realised here, namely the representation of synoptic weather patterns important for more 

realistically characterising wind drought conditions. In addition, similar to the DePreSys 

hindcast data set, this low resolution climate model data would need to be downscaled to the 

higher spatial resolutions currently ingested by electricity system models. Moreover, the 

quantification of the effect of climate change within this data set is limited to one specific 

future warming level. Therefore, this data is not representative of a projected future with 

varying warming levels, limiting context and flexibility in the adverse weather event analysis.  

UK Climate Projections: UKCP18 

The Met Office released the latest UK climate projections in November 2018 (Lowe, 2018). 

These projections include:  

 A new set of 28 global climate model projections to 2100, comprising simulations 

from both the latest Met Office Hadley Centre climate model and global climate 

models from around the world;  

 A set of 12 regional climate model projections on a finer scale (12km) for the UK and 

Europe to 2080; 

 A set of 12 projections produced with a model of horizontal/spatial scale 2.2km to 

2080, better able to represent some small-scale processes seen in the atmosphere, 

such as those important for large convective storms in the summer;  

                                                           
11 https://gisclimatechange.ucar.edu/question/63 (Accessed on 04/03/2020) 

https://gisclimatechange.ucar.edu/question/63
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 An updated set of probabilistic projections, giving estimates of different future climate 

outcomes to 2100; 

More information about UKCP18 can be found on the Met Office website12, which links to a 

number of relevant reports.  

Figure 3 summaries the climate model information available from UKCP18, detailing the 

horizontal/spatial resolution of each data set, the greenhouse gas emission scenarios 

considered, and the time-period and geographical domain covered.  

 

Figure 3: Taken from the UKCP18 Factsheet: UKCP Local (2.2km) Projections, Summary of UKCP18 climate 
models and scenarios for projections over land. 

The UKCP18 probabilistic projections are not spatially coherent (i.e. the spatial dependence 

between locations is not realistic) because the uncertainty in each grid cell is considered 

separately13. These projections are therefore not relevant for use within this project. The 

local (2.2 km) projections are only available for the UK, hence, while they may be relevant 

for informing about the effect of climate change on small-scale processes in the UK, they 

cannot be used to create the European-wide spatial-temporal meteorological fields required 

for representing long-duration adverse weather scenarios in this project.  

The global (60 km) projections have the greatest coverage in time (1900-2100) and space 

(global). As well as this, there are a larger number of these projections (28) which have been 

produced by a range of climate models (Met Office and other global modelling centres). This 

means that their use is recommended when an exploration of a wider range of future 

outcomes is more important than spatial detail. The regional (12 km) projections consist of 

fewer (12) projections over a shorter time-period (1981-2080), covering the required 

European domain. The increased resolution of these projections compared to the global 

projections means their use is recommended when improved representation of extremes or 

spatial detail is more important than exploring a wider range of future outcomes. 

Since both a wide range of future scenarios and consideration of the extremes are relevant 

to this project it may be necessary to use the two datasets in tandem. Using UKCP18 

climate change projections to directly represent future relevant decades (e.g. the 2050’s), 

would provide a comprehensive characterisation of the effect of climate change on the 

relevant meteorological variable and scenarios, hence addressing key question 3 in Section 

5. However, since there are only 28 or 12 projections available from the global/regional data 

sets respectively, the full variability and extremity of plausible meteorological scenarios (as 

                                                           
12 https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about (Accessed 13/03/2020)  

13 https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---
how-to-use-probabilistic-projections-maps.pdf (Accessed 17/04/2020) 

https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---how-to-use-probabilistic-projections-maps.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---how-to-use-probabilistic-projections-maps.pdf
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would be captured by the 40 historical runs in the DePreSys hindcasts) would not be 

captured. This approach would therefore not address key question 2.  

This climate variability could, in some way, be inferred by the historical period of UKCP18 

global projections. These comprise 15 projections of the period 1900-2018 created using the 

Met Office global climate model. This climate model is very similar to that used to simulate 

the DePreSys hindcasts, however, for the UKCP18 application the historical period is 

initialised only once, pre 1900, for each of the 15 projections, rather than every November 

(as is done in the DePreSys hindcasts). This means that the UKCP18 projections are 

allowed to evolve freely for the entire historical period, and hence are not necessarily 

representative of observed historical climate variability (i.e. the observed phases of climate 

modes of variability such as the North Atlantic Oscillation14). This could be advantageous in 

creating alternative realities with very different, and hence more extreme, meteorological 

conditions than those in the observations. However, it also means that the data has less 

context when used to supplement the observed historical period.  

In addition, the 15 Met Office global historical projections are each initialised with a slightly 

different set of climate model parameters in order to quantify climate model uncertainty. This 

means that the 15 ‘alternative realities’ created using this approach capture both climate 

variability and climate model parameter uncertainty, and hence these two types of 

uncertainty cannot be disentangled and understood in isolation. This has the implication of 

creating too wide or too narrow a set of realisations. Similar to the DePreSys data set, if 

used within this project, this UKCP18 historical data set would need to be downscaled to the 

required higher spatial-temporal resolution, and an approach for combining this information 

with the future projections would need to be developed. The UKCP18 simulations do, 

however, provide some information about solar radiation (unlike DePreSys), although no 

focus has been paid to this output in UKCP18 documentation thus far, hence it’s validity 

would need to be explored before use. 

 

5.1.2. The Proposed Method 
 

As evidenced by Section 5.1.1, no single data set is able to address every requirement of 

this part of the project: to develop an approach for identifying ‘adverse weather events’ and 

produce a set of long-duration electricity system relevant adverse weather scenarios, 

contained within whole years of hourly, 30 km gridded temperature, wind speed and solar 

radiation, representative of a large number of plausible weather years and the effect of 

climate change. Therefore, rather than using just one data set, a method is proposed that 

draws upon the advantages of various sources.  

It is recommended that this project phase be carried out in two stages. These stages are 

summarised in Figure 4.  

                                                           
14 https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/ens-mean/nao-description 
(Accessed 13/03/2020) 

https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/ens-mean/nao-description
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Figure 4: A diagram summarising the proposed method for completing Phase 2 of the project 
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Phase 2 (a): How can long-duration adverse weather stress events be 

characterised? 

The first stage aims to address key question 1. This involves using meteorological reanalysis 

datasets, European energy data sets, literature insights, and the expertise of the project 

advisory and user groups to develop an approach for characterising long-duration adverse 

weather stress events using meteorological information.  

This will be achieved by developing a set of stress event indices (one for each type of 

adverse weather type) based on weather conditions in each location and their potential for 

creating electricity demand and generation. In doing so, this will allow for the identification of 

periods of adverse weather stress events in any meteorological data set, which can 

ultimately be used to construct the final dataset of adverse weather events. An approach for 

doing so is explored in more detail in Section 5.2.1. 

The output of Phase 2(a) will be a clear set of definitions of what constitute each type of 

long-duration adverse weather stress event of interest. This will allow for periods of adverse 

weather to be identified within the historical record, which could be subsequently explored by 

energy modellers in the advisory/user groups to validate their usability and relevance.  

 

Phase 2 (b): Could something worse than that observed in the historical period 
have plausibly happened? And how might these adverse conditions change in 
future climates? 

The second stage aims to address key questions 2 and 3. The final dataset of adverse 
weather events should characterise many more plausible weather years than those in the 
observational record, and the effect of climate change.  

Following the discussions in Section 5.1.1, it is recommended that the DePreSys hindcast 

data set be used to represent adverse weather in the historical period, as it is known to most 

comprehensively quantify the variability of the observed historical period. Further, the future 

part of the UKCP18 global and regional climate projections should then be used to explore 

how adverse weather may change in future climates. Therefore, it is also recommended that 

the UKCP18 historical simulations be used alongside DePreSys to give context to the future 

climate projections. 

Using the stress event indices developed in Phase 2 (a), periods of adverse weather could 

then be identified in both data sets and used to construct data sets of extreme events 

characteristics of many plausible weather year and climate change. 

Following these recommendations, the methodological steps for using DePreSys hindcasts 

in combination with UKCP18 output to meet the needs of this stage of the project are as 

follows: 

1. Verify and calibrate climate model data 

Climate models are mathematical representations of reality and are therefore known 

to have biases compared to observed weather. This first step in the methodology will 

assess and correct these biased in the DePreSys and UKCP18 historical simulations. 

Possible methods for doing so, and their feasibility, are discussed further in Section 

5.2.2. 

2. Downscale climate model data to higher spatial-temporal resolution 
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The DePreSys hindcast data and UKCP18 global historical simulation and future 

projections are available on a 60 km resolution in space and a daily resolution in 

time. A method must therefore be developed for downscaling this data to be 

consistent with the spatial-temporal resolution of the popular reanalysis data currently 

used by many electricity system modellers: 30 km in space and hourly in time. 

Possible methods for doing so, and their feasibility, are discussed further in Section 

5.2.3. 

3. Represent solar radiation 

The DePreSys hindcast data set does not contain solar irradiance information. A 

method must therefore be developed for representing solar irradiance based on 

geographical information and other weather variables (e.g. temperature and wind 

speed). Possible methods for doing so, and their feasibility, are discussed further in 

Section 5.2.4. 

4. Incorporate climate change 

The effect of climate change on relevant meteorological variables and the adverse 

weather scenarios must be quantified by exploring the various future outputs of 

UKCP18. The characterisation of adverse weather scenarios must then be adjusted 

to follow this insight. This is discussed further in Section 5.2.5. 

This type of approach, whereby firstly a comprehensive historical characterisation of 

‘extreme risk’ is achieved, followed by an exploration of how this may change in future 

climates, is common scientific practise in the field of environmental risk quantification. 

The output of this stage of the project would be a data set of long-duration events (three 

forms), taken from DePreSys and UKCP18, contained within whole years of weather hourly, 

30km weather data. The dataset would characterise 1 in 2, 5, 20, 50 and 100 year return 

level events in terms of stress event duration and severity, representative of different regions 

and combinations of regions of Europe, and climates characteristic of 1.5, 2, 3 and 4 degree 

warmer than the preindustrial climate. 

 

5.2. Method Feasibility: Long-duration Events 
 

This section explores the feasibility of each stage of the method proposed in Section 5.2.1 in 

order to better understand how the method will work. This is achieved both in terms of expert 

insights from relevant scientists and literature, and, where appropriate, based on exploratory 

data analysis. 

 

5.2.1. Define adverse weather indices (Phase 2 a) 
 

As previously noted, a key question arising from the stakeholder engagement was: how can 

adverse weather stress events be defined and hence identified within meteorological data 

sets?  

The focus of this part of the project is on creating a set of long-duration adverse weather 

events, characteristic of multiple consecutive days of low renewable energy generation 
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(wind/solar) and high energy demand. As discussed in the literature review (Dawkins, 2019), 

such events will be important to characterise in both the winter, when demand is currently 

highest in the UK, and summer, when the demand for cooling could be increasingly high due 

to climate change. These types of adverse weather events fall into three categories (as in 

the Table in Section 4.3): 

 Winter-time wind drought coincident with below average temperatures 

 Summer-time wind drought coincident with above average temperatures  

 Summer-time surplus solar coincident with average wind speeds and temperatures 

The challenging in creating a definition for such events is in their multi-dimensionality. The 

‘extremity’ of such an event could depend on its magnitude (how adverse the weather 

becomes), spatial extent (how much of the electricity system is experiencing adverse 

weather), as well as its duration (how long the adverse weather persists for).     

When developing the definition of a ‘wind drought’ or a ‘solar surplus’ we could learn from 

methods in the field of rainfall drought modelling, e.g. (Burke, et al., 2010). Often rainfall 

drought is quantified using a ‘drought index’, representing the accumulated rainfall over a 

period of interest (e.g. the preceding 6 months), calculated over a number of time steps (e.g. 

a number months over many years). The time steps over which the drought index falls below 

some extreme threshold are then considered to be periods of drought. The duration (number 

of time steps below the threshold) and severity (accumulated drought deficit below the 

threshold) of these drought events can then be quantified, as shown in Figure 5. These 

drought characteristics are then often used to identify particularly bad periods and 

understand how drought events vary over time.   

 

 

Figure 5: A schematic taken from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought, 
demonstrating how drought duration and severity are often characterised in the rainfall drought literature: as the 
length of time (t) and accumulated deficit in the drought index (Qt) below a threshold (Qo), respectively. 

 

(Nairn & Fawcett, 2015) use a similar approach to develop a heat wave intensity index. This 
index, named the excess heat factor, is derived as the function of various measures of 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/drought
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temperature including the three-day-averaged daily mean temperature, found to capture 
heatwave intensity as it applies to human health outcomes well. 

In the context of long-duration, electricity system relevant wind droughts and surplus solar 

events, such indices could be calculated from wind speed, solar irradiance and temperature 

data. As in the rainfall drought and heatwave examples described above, the best way in 

which to use the weather variables to characterise the adverse event would be explored and 

an optimal stress event index identified.  

 

 

Figure 6: Taken from (Bett & Thornton 2016), Power curve of the wind shown in terms in the capacity factor. 

 

For wind droughts, for example, such an index could be calculated from wind speeds and 

temperatures that fall below or exceed specified thresholds know to relate to renewable 

generation and demand for electricity. This could incorporate insights from relevant 

literature, such as the wind power curve presented in (Bett & Thornton, 2016), shown in 

Figure 6, and the electricity demand model of (Bloomfield, et al., 2018). It may also be 

relevant to accumulate the weather variables over a number of hours or days to reflect the 

function of electricity storage during such long-duration events. The weather thresholds and 

functions that will be explored in this stage of the project will be informed by relevant 

literature, as well as the expert insights of the energy modellers in the project advisory and 

user groups.  

As well as severity and duration, the spatial extent of such drought events is relevant. To 

accommodate this additional dimension, these stress event indices could be calculated by 

accumulating grid cell indices over a number of specific regions of the UK and Europe, 

identified based on their variability/co-variability in meteorological conditions. As discussed in 

the literature review (Dawkins, 2019): Sections 3.2 and 5.3, with the focus of the UK 

electricity system the European domain could be characterised in this way by 7 regions: 

South and East UK, South and West UK, North UK, the North Sea, Northern Europe, Central 

Europe and Southern Europe.    

This would provide coincident (in time) drought indices for these different regions, which 

could be used in a similar way to a single drought index, to calculate combined drought 

durations and severities for different combinations of regions, and hence different spatial 

extents. These combined drought indices could then be used to identify the top N events or 

specific return period events in terms of duration, severity and spatial extent. In addition, 

extreme weather scenarios could be identified for different, relevant combinations of spatial 
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regions. For example, scenarios with extreme winter-time wind drought severity could be 

identified for the northern UK region only, as well as scenarios with extreme severity when 

all European regions are considered. This would allow different users of the data set to 

select events of most relevance to their particular application/region, e.g. someone exploring 

the potential for wind energy in northern UK could primarily use the set of adverse weather 

scenarios selected as relevant for the northern UK region. 

As previously highlighted, the definition of what constitutes an ‘extreme’ event for a specific 

electricity system may change according to the amount, types and distribution of renewable 

generation and storage installed; as well as the expected demand profiles considered. As 

the aim of this project is to produce a widely useable dataset of extreme stress events, that 

can be used to stress test the resilience of a range of possible futures, this stage of the 

project will focus on developing stress event indices that make no assumption about specific 

future systems. It is hypothesised that this can be achieved by quantifying the ‘potential’ for 

renewable generation and electricity demand in any given grid cell, rather than weighting 

certain locations by installed capacity or population. This will provide indices that identify 

stress events characteristic of extreme weather, independent of the electricity system 

configuration, but where the weather is used in a way that relates well to electricity 

generation and demand. This approach is supported by the insight that meteorological 

conditions (such as low wind speeds) that persist for long durations (a week or more) are 

often also found to extend over large areas (all of the UK and possibly Europe). Hence, 

considering all locations as relevant for the event indices (not just those in which future 

renewables will be installed), the index is likely to still relate well with periods of challenging 

weather for a future electricity system, as all locations will be affected by the adverse 

conditions. 

These indices could be refined by comparing event metrics (i.e. wind drought severity) 

applied to historical reanalysis data, with historical energy generation and demand data. For 

this, for example, the data set recently produced by the University of Reading could be used: 

the MERRA215 derived time series of European country-aggregate electricity demand, wind 

power generation and solar power generation (based on the electricity system of 2017)16. 

Exploring this relationship would help us to ensure that our drought index is able to capture 

the trade-off between energy demand and generation, based on meteorological variables. In 

addition, particular historical periods that were known to challenge the electricity system (e.g. 

January 2010 and July 2018) could be used as case studies to verify how the stress event 

indices perform. 

Once the stress event indices have been derived, they can be used to identify periods of 

adverse weather within the historical reanalysis data sets. The energy modellers in the 

advisory/user groups could then be given the opportunity to explore the impact of these 

identified periods within their electricity system models to validate their usability and 

relevance.  

The aim is to then use a finalised set of stress event indices to identify extreme adverse 

weather events in the DePreSys and UKCP18 data sets (Phase 2 b). Extreme stress events 

could then be identified as the top N% of events in terms of their duration and/or severity. As 

well as this, statistical extreme value analysis (EVA) methods could be used to model 

extreme drought/surplus event durations and severities, and hence identify which weather 

                                                           
15 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (Accessed 11/03/2020) 

16 https://researchdata.reading.ac.uk/239/ (Accessed 11/03/2020) 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://researchdata.reading.ac.uk/239/
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events are characteristic of specific extreme levels, such as a 1 in 20 year event (equivalent 

to an event with a 5% probability of occurring in any given year). For example, suppose a 1 

in 20 year wind drought duration is found to be 1 week, we could then go back to the 

DePreSys data set and pick out events with that duration to represent this return level. 

Further, we could use this drought index approach to explore and quantify the time between 

drought events. 

 

5.2.2 Verify and calibrate climate model data (Phase 2 b) 
 

Both the DePreSys hindcast data set and UKCP18 global historical projections are climate 

model representations of historical periods. While the exact day-to-day meteorological 

conditions will not be the same as those actually experienced, it is expected that each model 

simulation/projection of the historical period will have a similar ‘climatology’ (long-term 

distribution of weather) compared to the observations. That is, for example, at a given 

location, the climate models should have the same average temperature, wind speed etc., 

as have been observed. If this is not the case it may be that the climate model is biased (i.e. 

tends to be too hot or too cold at that location) and this must be corrected for before the 

climate model data can be used to represent the historical period. 

DePreSys 

In previous work carried out within the Met Office, the biases in DePreSys have been 

quantified by comparing the distribution of the weather variable of interest (e.g. temperature) 

from the DePreSys data set, with the equivalent distribution from a gridded observational or 

reanalysis data set in the same historical period. This is done on a grid cell by grid cell basis, 

focusing on comparing the mean, standard deviation (variability), skewness and kurtosis17 of 

the distributions. 

As an initial exploration of the DePreSys data set we have extracted and compared the 

distribution of mean sea level pressure (mslp) from DePreSys with that in the ERA57 

reanalysis data set. The mslp is used here as regional patterns in pressure can be used to 

characterise temperature, wind speed and solar irradiance (Dawkins, 2019).  

This initial exploration was carried out for approximately 300 DePreSys 60 km grid cells 

covering the UK, and for the period 1979-2015. Here ERA5 is used as a representation of 

the observations as this is the data set currently used by electricity system modellers to 

represent observed meteorological conditions. The 30 km resolution ERA5 data is regridded 

to the same 60 km grid as DePreSys to allow for a direct comparison. Figure 7 shows this 

comparison for two of the 60 km grid cells.  

Figure 8 shows the same comparison of the mslp distributions between DePreSys and 
ERA5 across all of the 300 grid cells, in terms of the distribution mean, standard deviation, 
skewness and kurtosis. Where the ERA5 distribution metric (e.g. mean) is greater than or 
less than the range of the metric calculated from each of the 40 DePreSys hindcast 
ensemble members, the grid cell is specified as being biased in that metric. According to the 
results shown in Figure 8, at the location on the top row of Figure 7 (Ireland), DePreSys has 
a distribution that is biased in terms of the mean, skewness and kurtosis; while at the 

                                                           
17 https://www.usna.edu/Users/oceano/pguth/md_help/html/moment_stats_2.htm (Accessed on 05/03/2020) 

https://www.usna.edu/Users/oceano/pguth/md_help/html/moment_stats_2.htm
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location on the bottom row of Figure 7 (London) DePreSys is unbiased in all distribution 
metrics.  

 

Figure 7: A comparison of the distribution of daily mean sea level pressure (mslp) in the period 1979-2015, from 
the DePreSys hindcast data set and from the ERA5 reanalysis data set (regridded to the same low spatial-
temporal resolution as DePreSys), in two DePreSys grid cells within the UK (in each row). The locations of the 
grid cells are shown on the UK maps in the left panels (a and c), comparisons of the two distributions in the form 

of histograms18 are shown in the right panels (b and d). 

 

Figure 8: Maps showing where the DePreSys hindcast data is biased compared to ERA5, in terms of the mean, 
standard deviation, skewness and kurtosis of the distributions of mslp in the period 1979-2015.(e.g. the 

distributions shown in Figure 7). 

                                                           
18 https://www.mathsisfun.com/data/histograms.html (Accessed on 05/03/2020) 

https://www.mathsisfun.com/data/histograms.html
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There are well-established statistical methods for transforming distributions to be 

representative of other distributions. Such approaches could be used to transform the 

DePreSys weather variable to look more like ERA5. One such method is known as quantile 

mapping/matching. This approach maps the ranked data of one distribution to the value of 

the associated rank in another distribution. After applying this method, the two distributions 

match exactly, as demonstrated in Figure 9 (b).  

This approach could be used to bias correct DePreSys mslp (and other weather variables) 

within each grid cell, and the resulting bias maps equivalent to those shown in Figure 8 

would be fully blue for all of the four distribution metrics. However, in doing so some of the 

additional information contained within DePreSys would be lost. Most importantly, the 

maximum value of the weather variable in the DePreSys data would be mapped to the 

maximum value in the ERA5 data. Hence, while the duration and spatial extent of extreme 

highs and lows would be retained, the magnitude of these extremes will be limited to not 

exceed those within the observation record.  

 

 

Figure 9: Demonstration of the change in the DePreSys mslp distribution at the Ireland location (top row of Figure 
7) from the original distribution (a), following bias correction using (b) quantile mapping and (c) mean and 
standard deviation rescaling. 

 

Since the aim of using the DePreSys hindcast data set it to more comprehensively represent 

all plausible extreme scenarios, the extremes must not be restricted in this way. Hence an 

alternative, less strict bias correction approach could be followed. Specifically, the mean and 

standard deviation of the DePreSys distribution could be rescaled to match that of the ERA5 

distribution, leaving the skewness and kurtosis unaltered.  

The result of applying this adjustment to the Ireland location is shown in Figure 9 (c). Now, 

rather than the two distributions matching up exactly, the mean and spread of the DePreSys 

distribution align more closely with the ERA5 data, and the extremes of the DePreSys data 

are allowed to be greater in magnitude compared to ERA5. The resulting bias maps 

equivalent to those shown in Figure 8 would be fully blue for the mean and standard 

deviation distribution metrics.  

Applying such bias correction methods to each meteorological variable on a grid-cell-by-grid-

cell basis will, however, lead to a general distortion of the relationships between the 

meteorological variables (e.g. the relationship between wind speed and temperature) and 

there correlations across space. This could lead to unrealistic meteorological fields. Hence, 

as recommended by (Cannon, 2016), in cases where retaining this between variable and 

spatial coherence is important (as it is here), applying a multivariate bias correction 
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approach is necessary. Specifically, (Cannon, 2016) and (Bürger, et al., 2011) describe a 

multivariate generalisation of the mean and standard deviation rescaling approach described 

above, which replaces the standard deviation with the multivariate covariance matrix19. 

This multivariate bias correction approach is simple to apply, with many examples of its 

application in the literature. It will therefore be feasible for use to bias correct the DePreSys 

hindcast data across the European domain, in multiple meteorological variables (i.e wind 

speed and temperature), as required for this project. 

UKCP18 global historical projections 

When developing the UKCP18 data sets the Met Office Hadley Centre carried out extensive 

evaluation of the historical period. 

Figure 10, taken from the UKCP18 land projections science overview (Murphy, 2018), shows 

the mean bias in temperature taken from the UKCP18 global historical projection when 

compared to reanalysis, separately for December-January-February and June-July-August. 

These results indicate a significant cold bias over most of the northern hemisphere 

continental land mass in winter. 

The same multivariate mean and covariance scaling method detailed above could be used 

to adjust any biases identified within the UKCP18 global historical projections. Again, since 

this is simple to apply, this is a feasible approach for adjusting this large data set across 

Europe. 

 

 

Figure 10: Taken from (Murphy, 2018): Twenty-year mean biases in surface air temperature (°C) simulated by 
the 15 members of the Met Office global PPE. Errors for December-January-February (DJF) and June-July-
August (JJA) are calculated relative to ERA-Interim reanalyses of observations20, for 1981-2000. 

 

Further validation of these two data sets could be carried out using the weather patterns 

introduced in Section 4.2 of (Dawkins, 2019). As described in (Dawkins, 2019), (Neal, et al., 

2016) have developed an approach for summarising North Atlantic mslp patterns into 30 

general weather patterns. These patterns are characteristic of various temperature-wind-

solar conditions, a number of which are highlighted in (Dawkins, 2019) as being potentially 

representative of adverse weather condition relevant for the electricity system, such as high 

                                                           
19 https://datascienceplus.com/understanding-the-covariance-matrix/ (Accessed 24/03/2020 
20 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (Accessed 09/03/2020) 

https://datascienceplus.com/understanding-the-covariance-matrix/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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pressure blocking conditions which lead to wind droughts. This further validation of the 

DePreSys and UKCP18 climate data sets could therefore involve exploring whether the 

frequency and persistence of these weather regimes is consistent with observations, the 

results of which will give further context to the data sets used within this study. 

 

5.2.3. Downscale climate model data to higher spatial-temporal resolution 

(Phase 2 b) 
 

Currently, electricity system models ingest 30 km spatial, and hourly temporal, resolution 

weather information. The DePreSys hindcast data and UKCP18 global historical projections 

provide mslp, wind speed, wind direction, temperature, and solar irradiance (in the case of 

UKCP18), at a 60 km, daily resolution. In order to align with the data currently used by 

energy modellers, these climate model data sets must be downscaled to a higher spatial-

temporal resolution, or in other words, we need to ‘fill in the gaps’ in the low-resolution data. 

This can be achieved using a statistical data science modelling approach. Specifically, the 
ERA5 reanalysis data can be used at both its original resolution (High resolution ERA5) and 
re-gridded to the lower 60 km daily DePreSys resolution (Low resolution ERA5) by averaging 
in space and time, to understand the statistical relationship between low and high resolution 
representations of the meteorological variables. This downscaling relationship is 
characterised using a data science model, which can then be used to transform the low 
resolution DePreSys data, representing adverse weather scenarios not captured by ERA5, 
to the higher resolution required by electricity system modellers. This downscaling process is 
demonstrated in Figure 11. 

 

 

Figure 11: Diagram demonstrating the statistical data science downscaling modelling framework: trained on low 
resolution and high resolution ERA5 and then used to downscale low resolution DePreSys to the high ERA5 
resolution. 

 

There are many data science modelling approaches that can be used to capture this 

downscaling relationship. One such approach is to fit a Generalised Additive Model (GAM)21. 

This type of model is particularly relevant when the relationship being represented is non-

linear. This is important here as the downscaling relationship is likely to vary non-linearly in 

space and time, with longitude, latitude, time of the day and time of year. This GAM 

approach has been commonly used in the literature to downscale climate model data, e.g. 

(Korhonen, et al., 2013).  

                                                           
21 http://environmentalcomputing.net/intro-to-gams/ (Accessed on 06/03/2020) 

http://environmentalcomputing.net/intro-to-gams/
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Figure 12: A demonstration of the data science spatial downscaling approach, trained to transform daily low 

resolution (60 km) mslp to daily high resolution (30 km) mslp. The plot on the top right shows the original high 

resolution ERA5 mlsp on 1st January 2009 in the fitting region, top left shows the equivalent data re-gridded to 

the 60 km resolution of DePreSys by averaging in space and time. The downscaling model is trained on these 

two data fields, to transform from low resolution to high resolution. The plot on the bottom left shows the low 

resolution ERA5 data in the validation region. This data is fed into the downscaling model and used to predict 

mslp at a high spatial resolution, as shown in the bottom right plot. The true high resolution ERA5 mslp in this 

validation region is shown in the top corner of this plot for comparison. The same data science modelling 

approach is then extended to downscale in both space and time. The GAM modelling framework is now trained to 

capture the relationship between daily 60 km ERA5 mslp (low resolution ERA5) and hourly 30 km ERA5 mslp 

(high resolution ERA5), where this relationship is allowed to vary non-linearly with longitude, latitude, time of the 

day and time of the year. 

To demonstrate this downscaling approach and test its feasibility, ERA5 mslp data covering 

a small UK region for a single year (here 2009, chosen at random) has been extracted, and 

used to train a data science model in the form of a GAM. Initially this downscaling is 

explored in space (rather than space and time). The GAM is therefore trained to capture the 

relationship between daily 60 km ERA5 mslp (low resolution ERA5) and daily 30 km ERA5 

mslp (high resolution ERA5), where this relationship is allowed to vary non-linearly with 

longitude and latitude. A demonstration of this spatial downscaling is shown in Figure 12. 

The spatial downscaling model is trained on a ‘fitting area’ of the UK region, shown in the top 

row of Figure 12, and then used to downscale low resolution mslp to high resolution mslp in 

a ‘validation area’, shown in the bottom row of Figure 12. Here, ERA5 is used in both stages 

of the modelling demonstration to allow for the downscaled output to be compared to the 

‘true’ high resolution ERA5 in the validation region. This comparison is made in the bottom 
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right plot in Figure 12, showing good agreement between the model output and the true 

mslp. This therefore indicates good promise in using this method for downscaling.  

 

 

Figure 13: A demonstration of the data science spatial-temporal downscaling approach, rained to transform daily 

low resolution (60 km) mslp to hourly high resolution (30 km) mslp. This model is fitted to all data in 2009 and 

used to downscale low resolution ERA5 mslp to high resolution on 1st January 2009. The plot on the left shows 

the true ERA5 hourly mslp (red dots), daily mean ERA5 mslp (blue dashed line) and the downscaling model 

representation of hourly mslp (black line) for 1st January 2009 in one grid cell (longitude:-3, latitude:54), the 

middle plot shows the true high resolution ERA5 mslp at 12pm across the study region, and the plot on the right 

shows the high resolution prediction of mslp from the spatial-temporal downscaling model. 

The same data science modelling approach is then extended to downscale in both space 
and time. The GAM modelling framework is now trained to capture the relationship between 
daily 60 km ERA5 mslp (low resolution ERA5) and hourly 30 km ERA5 mslp (high resolution 
ERA5), where this relationship is allowed to vary non-linearly with longitude, latitude, time of 
the day and time of the year.  
 
A demonstration of this spatial-temporal downscaling is shown in Figure 13. The model is 

now trained on all days in 2009 and then used to downscale low resolution (daily) mslp to 

high resolution (hourly) mslp on 1st January 2009. The results in Figure 13 show that the 

downscaling model is able to capture the daily variability in mslp reasonably, and the 

resulting downscaled spatial field of mslp at 12pm shows generally good agreement with the 

true ERA5 mslp.  

While it is expected that the results in Figure 13 could be improved with further model 
development, this data-science modelling approach for downscaling low resolution climate 
model data (DePreSys and UKCP18) is showing good promise. In addition, it is known that 
there is a more distict within-day cycle in temperature, wind speed and solar irradiance 
(Dawkins, 2019) compared to mslp, hence temporal downscaling will be more sucessful in 
these weather variables. In addition, in order to characterise long-duration, multi-day events, 
it is not essential to recreate the exact hourly variability, rather a plausible realisation is 
necessary. 

The downscaling model presented here can be trained/fitted in minutes and is therefore well 

suited for application to whole years of climate model output, as would be required for this 

project, confirming its feasibility. An additional advantage of using a data science approach 

for downscling is that each downscaled field will have an associated quantification of 
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uncertainty. This means that, rather than just using the downscaled mean (as shown in 

Figures 12 and 13) a range of plausible downscaled high resolution fields can be provided, 

giving a number of alternative plausible adverse weather scenarios. 

When completing this phase of the project it will be important to rigorously validate the data 

science modelling framework that is developed. This could be achieved using an approach 

similar to that shown in Figure 9, comparing downscaled ERA5 in a region not included 

within the model fitting/training, with the true high resolution ERA5 in that region (i.e. cross-

validation). In addition, the resulting downscaled gridded data must be comprehensively 

verified to ensure it is realistically representing the relevent meteological variables. 

Specifically, the spatial and temporal correlations in the meteorological variables must be 

explored to ensure they are consistant with those in the reanalysis data. Further, the 

correlations between different meteorological variables in the downscaled data must also be 

explored to ensure they reflect the relationships seen in the reanalysis.  

It must be noted that when aiming to represent long-duration adverse weather events such 

as wind droughts, very accurately characterising the hourly small-scale variability in each 

weather variable is less relevant. Rather, it will be more important to correctly represent the 

average underlying weather (ensured through the data calibration step), and that the 

downscaling models simply produces plausible high resoltuion variability in the weather 

variables. Furthermore, the most important variables in these events (wind and temperature) 

vary relatively slowly in space and time at the resolution of interest. 

 

5.2.4. Represent solar radiation (Phase 2 b) 
 

The DePreSys hindcast data set contains temperature, wind speed, wind direction and mslp 

at a daily resolution. Further weather variables are available at a monthly temporal 

resolution, however, none of these relate to solar irradiance. As a result, if the DePreSys 

data set is used in this project to more comprehensively represent the variability and 

extremity of historical weather scenarios, an approach must be developed for representing 

solar radiation on the same space-time grid as the other relevant weather variables. 

The solar radiation available at the top of atmosphere (TOA), i.e. above the clouds, can be 

calculated for a given day of the year, time of the day, and longitude-latitude location based 

on simple astronomical principles related to the Earth’s rotation and movement around the 

sun (Meeus, 1998). Figure 14 shows a representation of how TOA solar radiation, calculated 

based on these principles, varies with time and across the UK domain.  

In capturing this available TAO solar radiation, most of the variability in solar radiation 

explained by spatial and temporal information (e.g. longitude-latitude, time of day) is 

represented. It therefore remains to develop a model for adjusting this TOA radiation to 

represent surface solar irradiance, according to the meteorological conditions that are 

available from the DePreSys data set. Again, this can be achieved using a data science 

modelling framework, similar to that used for downscaling, as presented in Section 5.2.3. 
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Figure 14: The variability in TOA solar radiation with (a) hour of the day [on 30th June 2009, for longitude:-3, 
latitude:54], (b) day of the year [at 12 noon, for longitude:-3, latitude:54], (c) Longitude [on 30th June 2009, at 12 
noon, for latitude:54], and (d) Latitude [on 30th June 2009, at 12 noon, for longitude:-3]. 

 

To test the feasibility of such an approach, we develop a GAM model for predicting hourly 

‘residual’ solar irradiance (surface solar irradiance minus TOA solar) in one high-resolution 

grid cell, from daily low-resolution mslp, temperature, wind speed, wind direction and NAO, a 

large-scale climatic mode of variability, known to influence UK weather. Again, this GAM is 

developed using ERA5 gridded output only to allow for validation of the predicted output 

compared to true high resolution ERA5 solar irradiance.  

Figure 15 shows the relationship between ERA5 hourly residual solar radiation and other 

weather variables on a daily resolution, during summer, in one grid cell (longidue:-3, 

latitude:54). These plots indicate various non-linear relationship between these weather 

variables, which could be captured by the GAM model and used to predict hourly residual 

solar irradiance. For example, there is an indication that windier, cooler days in summer 

have generally lower residual solar radiation. This aligns with expectations, as windier and 

cooler conditions often coincide with cloudy skies in summer. In addition, Figure 15 correctly 

identifies how higher mslp leads to clear skies conditions and hence higher residual solar 

irradiance. 
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Figure 15: The relationship between ERA5 hourly residual solar irradiance (surface solar irradiance minus TOA 
solar radiation) and ERA5 daily (a) temperature, (b) mslp, (c) wind direction, (d) wind speed, and (e) NAO, for 
summer months (June, July, August), 8am-6pm, for high-resolution grid cell longidue:-3, latitude:54. In each plot 
a cubic smoothing spline22 is included (blue line), showing the general non-linear relationship between the two 
variables in the plot.  

The relationship between these weather variables and residual solar irradiance is likely to 

vary with time of year. For example, anomalously cold conditions are associated with clear 

skies and hence high solar radiation in winter, while hotter than average temperatures are 

associated with the same conditions in summer. This can be accounted for within the GAM 

model by allowing the relationships between weather variables to vary with time of year. In 

addition, we can use insights from the known meteorology of the UK to improve the success 

of the prediction model. Specifically, it is known that, when wind is blowing from the south-

west and temperatures are lower/higher than average in summer/winter, it is likely to be 

cloudy and hence solar irradiance will be low, while when wind is blowing from the north-east 

and temperatures are higher/lower than average in summer/winter, there are likely to be 

clear skies in the UK and hence solar radiation will be high. The GAM modelling framework 

allows us to represent this by including the effect of the interaction between wind direction, 

temperature and time of year, on the residual solar irradiance.  

Figure 16 presents the validation of this GAM modelling framework, developed to represent 

hourly residual solar irradiance in 2009 in a single high-resolution grid cell (longidue:-3, 

latitude:54). This model can be used to represent surface solar radiation by adding back on 

TOA solar radiation.  

 

 

 

                                                           
22 https://www.centerspace.net/smoothing-cubic-splines (Accessed 09/03/2020) 

https://www.centerspace.net/smoothing-cubic-splines
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Figure 16: A demonstration of the GAM model developed to predict hourly high-resolution residual solar 
irradiance from daily low-resolution mlsp, wind speed, wind direction, temperature and NAO. This model is 
trained/fitted using ERA5 data from all hours in 2009 with TOA solar radiation greater than zero, for one high-
resolution (30 km) grid cell in the UK domain (longidue:-3, latitude:54). Plot (a) shows a scatter plot of the 
relationship between ERA5 true ‘observed’ hourly residual solar irradiance, and hourly residual solar irradiance 
predicted from the GAM model for all modelled hours in 2009. The blue line indicates where y=x, i.e. where the 
true and predicted values are the same. Plots (b) and (c) show the same comparison but as a time series for 
modelled hours in (a) January 2009 and (b) July 2009, where the red line is the ERA5 true ‘observed’ hourly 

residual solar irradiance and the black line is predicted hourly residual solar irradiance from the GAM model. 

 

The results in Figure 16 show how the flexible GAM modelling framework is able to capture 

the variability in the observed hourly residual solar irradiance. This is evidenced by the 

points in plot (a) lying close to the line y=x (i.e. truth and predicted values are similar), and 

reflected in the alignment of the true (red) and predicted (black) times series in plots (b) and 

(c). It is clear from Figure 16 (b) and (c) that the model is better at predicting residual solar 

irradiance from other weather variables in summer months. The GAM model is even able to 

capture some of the very extreme residual solar irradiance values in the observed time 

series (e.g. the second peak in Figure 16 c). This is advantageous, as quantifying solar 

irradiance in summer will be of most importance when considering adverse weather 

scenarios for the electricity system. A number of the observed summer peaks are, however, 

not captured by the model, reflected in how the scatter points in Figure 16 (a) lie below the 

lie y=x for high levels of residual solar. Further work is required to tune the GAM model to 

better represent all peaks in solar, as these will be important for accurately representing 

surplus solar stress events. Consistent results to those shown in Figure 16 are found when 

the model is trained to predict residual solar radiation in alternative grid cells in the UK 

domain.  

This approach for representing solar radiation is therefore showing good promise. Similar to 

the GAM models developed in the previous section, this model takes minutes to fit to a 

single year and grid cell, indicating its feasibility to be extended to model across more years 

and grid cells.  
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5.2.5. Incorporate climate change (Phase 2 b) 
 

As discussed in the related literature review (Dawkins, 2019), the latest UK climate 

projections released by the Met Office in November 2018 (Lowe, 2018), show a clear 

increasing signal in UK temperatures. The magnitude of this increase depends on the level 

of climate change mitigation employed globally and the ultimate sensitivity of the climate 

system to greenhouse gas emissions, characterised by the Representative Concentration 

Pathways (RCPs) described in Section 7.4 of (Dawkins, 2019). Specifically, the UKCP18 

results suggest that winter minimum temperatures are on average most likely to rise by 1 – 

2oC throughout the UK by 2100; and summer maximum temperatures are on average most 

likely to rise by 2 - 3 oC in the south of the UK by 2100. Further, the UKCP18 headline 

findings report23 notes how, in the recent past (1981-2000), the chance of seeing a summer 

as hot as 2018 was low (<10%), while currently (2018/19) the chance is between 10-20%, 

and due to further warming will increase to approximately 50% by 2050. As discussed in on 

page 62 of (Dawkins, 2019), this projected warming in the UK is likely to affect energy 

demand in the UK, both in terms of potentially reducing winter-time heating demand and 

increasing summer-time cooling demand.  

The effect of climate change on wind speeds and solar irradiance, on the other hand, is less 

well understood (Dawkins, 2019), with various studies showing conflicting results. It is 

important to note, however, that often these studies focus on the mean of the meteorological 

variable, and hence there may be a plausible change affecting the extreme adverse weather 

scenarios, which must be captured.    

There has been some consideration within the UKCP18 analysis (Lowe, 2018), of how 

climate modes of variability, such as the NAO, will change in future climates. The UKCP18 

climate projections indicate a possible decrease in the number of winter days in the negative 

phase of the NAO (associated with blocking, low wind speed and cold condition) and a 

corresponding increase in positive NAO (windy and mild) days. (Lowe, 2018) note, however, 

that it is unclear if this change in NAO is due to natural variability or is part of a human driven 

trend. Recent work within the Met Office has also aimed to explore how the occurrence and 

persistence of the previously introduced weather regimes (Neal, et al., 2016) may change in 

the future. Very preliminary results indicate a possible increase in the occurrence and 

persistence of blocking weather patterns (which lead to low wind speeds) in the summer and 

an increase in the occurrence of stormy weather patterns in the winter. These insights 

highlight the importance of capturing the effect of climate change on the meteorological 

conditions associated with the adverse weather scenarios produced by this project.  

Initially, an exploration could be carried out to understand how adverse weather scenarios, 

identified using the derived adverse weather event metric (e.g. wind drought index), change 

in future climates. This could be achieved by identifying adverse weather events using future 

years from both the UKCP18 global projections (to better capture the range of possible 

futures) and regional projections (to better capture small scale atmospheric processes), and 

observing how the events change in terms of duration and severity, with time, under different 

RCPs, and across different regions. This exploration would allow a more explicit 

understanding of how climate change will impact electricity system resilience, answering 

questions such as: do long-duration adverse weather scenarios related to peak energy 

                                                           
23 https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-headline-
findings-2.pdf (Accessed 13/03/2020) 

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-headline-findings-2.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-headline-findings-2.pdf
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shortfall get longer, more severe, more frequent? And how does this change vary across 

different regions of Europe?  

Following this, it will be important to characterise any identified change in adverse weather, 

within the data set of scenarios produced within this project. There are a number of relevant 

projects ongoing at the Met Office from which a method for doing so could be derived from. 

In a similar way, these projects aim to characterise environmental risk in the historical period 

and then quantify and represent this risk in future climates. One such project, funded through 

the Met Office is aiming to combine methods for estimating flood risk in the UK with future 

climate projections, to create a future flood risk assessment tool. This project began in early 

2020, hence the approaches for doing so are still evolving. Possible methods for adjusting 

their flood risk to account for climate change currently involve either using UKCP18 

projections directly and quantifying the risk in future decades, or using the projections to 

define climate uplift/change factors, which can be used to adjust the historical risk maps to 

represent future increases/decreases in risk.  

Another relevant on-going project is the development of the Bank of England’s 2021 biennial 

exploratory scenarios on the financial risks from climate change24. This project aims to 

develop a number of plausible future climate narratives, and produce the corresponding 

climate projections, to allow for the exploration of the financial risks posed by climate 

change. Again, this project is in its infancy, hence the method for producing the necessary 

climate projections for relevant weather variables is still to be developed. However, it is 

expected that this will involve adjusting current conditions to represent the required change 

in climate, hence again using an uplift/change factor approach.  

In these types of project, employing an uplift/change factor approach has advantages over 

directly using the UKCP18 projections, as it allows for the often-richer quantification of the 

variability in historical risk to be combined with the possible change in future conditions. As 

such, this approach has been widely used in the past to adapt historical weather to be 

representative of the future. For example, within the UKCP09 weather generator (Jones, et 

al., 2011), and many climate change impact assessment studies, as discussed by (Anandhi, 

et al., 2011). In most cases, however, this approach is used to characterise changes in the 

mean/average meteorology (e.g. a mean shift in temperature), and is less frequently applied 

to extreme meteorological phenomena. In addition, it is not clear how such an approach 

could be extended to adjust adverse weather scenarios to represent future changes in the 

duration of events.  

An alternative method, first developed by (Brown, et al., 2014), has been recently used 

within a project to quantify the change in meteorological extremes in the UKCP18 

projections. This approach is similar to the statistical EVA modelling approach discussed in 

Section 5.2.1. Here, however, rather than fitting the EVA model to historical events only (i.e. 

wind drought event severity from the DePreSys hindcasts), events for the UKCP18 future 

projections are also used, and the EVA model is allowed to vary in time with global mean 

temperature. Hence, the resulting EVA model characterises the meteorological stress event 

index as a function of global mean temperature (which is a representation of the magnitude 

of climate change). This approach would therefore allow for the identification of adverse 

weather scenarios, characteristic of a required return period (e.g. a 1 in 20 year event) and 

of the global mean temperature for a year of interest (e.g. 2050) or a warming level of 

interest (e.g. 2oC above preindustrial levels). Once this EVA model has been fitted, exploring 

                                                           
24 https://www.bankofengland.co.uk/paper/2019/biennial-exploratory-scenario-climate-change-discussion-paper 
(Accessed 12/03/2020) 

https://www.bankofengland.co.uk/paper/2019/biennial-exploratory-scenario-climate-change-discussion-paper
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different warming levels (e.g. 1.5, 2, 3 and 4oC) is easily achieved by simply adjusting the 

‘global mean temperature’ variable in the model. This method therefore has the potential to 

be used to extract adverse weather scenarios of various extreme levels (return periods) for 

various decades and climate change futures. This method has also recently been used by 

Met Office colleagues to quantify a high return level extreme temperature event in Wales, 

characteristic of future climate change to 2080, relevant for informing a nuclear infrastructure 

safety case. 

All of these potential methods are based on peer-reviewed literature, have been applied on 

numerous occasions to similar problems, and hence will be feasible to use within this 

project. The preferred method for this application will evolve through ongoing engagement 

with relevant experts involved in the aforementioned projects. 

   

5.3 Method Scoping: Short-duration Events 
 

As well as long-duration wind and solar drought events, short-duration extreme fluctuations 

in wind and solar conditions challenge the resilience of a highly renewable electricity system. 

For example (Cannon, et al., 2015) found that in the period 1980-2012, wind capacity factor 

changes of up to 80% have been experienced within 3 hour time windows. In addition, these 

events are likely to become more extreme and frequent in future electricity systems with 

higher installed wind and solar capacities and higher demand due to electrification of the 

heating systems. It is therefore important that they are also captured within the final data set 

of adverse weather scenarios.  

 

5.3.1 Relevant data sets 
 

This type of short-duration meteorological event is often characterised by a large change in 

wind/solar energy generation in a short period of time (i.e. a matter of hours), leading to what 

is known as a ‘ramp’ in energy generation. As such, the hour-to-hour variability in the data 

used to characterise such events is very important and must be accurately represented. For 

this reason, using the downscaled climate model data (DePreSys and UKCP18 historical 

projections) described in relation to the long-duration methodology in previous sections, 

would not be optimal here. Rather, a data set of hourly or sub-hourly meteorological 

variables should be used. In addition, for understanding the resilience of the UK electricity 

system to this type of event, meteorological information across only the UK is required (i.e. 

interconnectivity with Europe is not as relevant on these short time scales).  

Currently, reanalysis data sets are often used to explore this type of event, for example the 

work of (Cannon, et al., 2015). These data sets are advantageous in being available for up 

to a 1-hourly temporal resolution, however, they are known to underestimate extreme 

weather compared to raw observations (Cannon, et al., 2015). Being able to accurately 

represent extremes is particularly relevant for this application, hence reanalysis data may not 

be optimal. 
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As an alternative, the Met Office UK land observation system25 data set could be used. This 

consists of temperature, wind speed, pressure and cloud cover information recorded at an 

hourly resolution across a dense system of sensors in the UK. In addition, this information 

could be supplemented by satellite observations, such as from SARAH26, which provides 

half-hourly solar irradiance information in the period 1983-2013. 

In using just the observational period, however, we are not addressing key question 2 posed 
at the beginning of Section 5: Could something worse than that observed in the historical 
period have plausibly happened? Since these short-duration events are, by their very nature, 
shorter than the long-duration events, there will likely be many more of them within the 
observation record. In addition, since these are more local phenomena, there are likely to be 
more examples of them within the observational record. As a result, their variability will be 
better represented by the historical record. These observations could, however, be 
supplemented with short-range (out to 12 hours) high resolution (hourly, 1.5 -2.2km) weather 
forecasts from the Met Office UK forecasting system27. Historical forecasts from this model 
have been archived since 2010, and are available in both deterministic and ensemble 
forecast28 formats from MOGREPS-UK (Met Office Global and Regional Ensemble 
Prediction System - UK). Including these forecasts would therefore provide a number of 
alternative 12 hour periods to those that have been observed since 2010, and hence may 
characterise short-duration ramping events more extreme than those experienced in the 
observational record. Similar to the DePreSys and UKCP18 model data, these weather 
model generated forecasts would require validation and calibration to ensure their accuracy 
in representing observed meteorological variables.   

 

5.3.2. Define and identify adverse weather scenarios 
 

Short-duration adverse weather scenarios are characterised by a large change in energy 

generation in a small time window. Since this definition is related to energy generation, and 

not the meteorological variable itself, again, the available weather data must be related to 

energy generation in order to identify extreme adverse weather events. 

Similar to the long-duration event, this could be achieved by developing stress event indices 

to characterise these short-duration ramping events in terms of the related meteorological 

conditions. These could quantify the change in winds/solar conditions, the time window over 

which the change occurred, and the spatial extent of the rapid change. In addition, the most 

relevant form of the meteorological variables must be explored, for example, it may be more 

relevant to study wind-gusts29 rather than wind speeds when aiming to represent wind 

ramping events.  

Again, these indices could be verified using historical energy data, as well as the insights of 

expert energy modellers in the project advisory and user groups.  

                                                           
25 https://www.metoffice.gov.uk/weather/guides/observations/uk-observations-system (Accessed 13/03/2020) 
26 https://climatedataguide.ucar.edu/climate-data/surface-solar-radiation-data-set-heliosat-sarah-edition-1 
(Accessed 13/03/2020) 
27 https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/weather-forecasting 
(Accessed 13/03/2020) 
28 https://www.metoffice.gov.uk/research/weather/ensemble-forecasting/what-is-an-ensemble-forecast (Accessed 
13/03/2020) 
29 https://www.thoughtco.com/why-wind-gusts-3444339 (Accessed 24/03/2020) 

https://www.metoffice.gov.uk/weather/guides/observations/uk-observations-network
https://climatedataguide.ucar.edu/climate-data/surface-solar-radiation-data-set-heliosat-sarah-edition-1
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/weather-forecasting
https://www.metoffice.gov.uk/research/weather/ensemble-forecasting/what-is-an-ensemble-forecast
https://www.thoughtco.com/why-wind-gusts-3444339
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Once these stress event indices have been developed, the most extreme events, or events 

associated with specific return periods, could be selected using empirical or statistical EVA 

methods.  

 

5.3.3. Explore the effect of climate change 
 

Wind speed and solar irradiance are most important for characterising these short-duration 

adverse weather scenarios. As previously described in Section 5.2.5, the effect of climate 

change on these two variables is less well understood compared to, for example, 

temperature. Further, changes in short-duration fluctuations of these variable within climate 

change projections have not yet been explored, since until very recently the spatial-temporal 

resolution of climate models has not allowed this level of detail.  

The new UKCP18 high-resolution (2.2km) future projections are run at a high enough 

resolution to resolve the types of meteorological conditions that may lead to rapid changes in 

generation. These projections contain 3-hourly wind speeds and wind-gusts for the UK to 

2080. This data could therefore be used to explore how climate change may affect 

fluctuations in wind speed over 3 hour time windows. This insight could then be used to 

understand and characterise wind ramping events in future climates. These UKCP18 

projections do not provide sub-daily solar information and hence cannot be used to explore 

future changes in solar ramping events. 

 

5.3.4. The Proposed Method 
 

A similar two stage approach is proposed for the short-duration event phase of the project. In 

the first stage, the definition of what constitutes wind and solar ramping events is explored 

using historical weather and energy information, addressing key question 1 at the beginning 

of Section 5. The second stage then aims to address key questions 2 and 3, by using these 

stress event definitions to identify adverse weather in the MOGREPS-UK ensemble 

forecasts and high resolution UKCP18 future projections. This two stage approach is 

summarised in Figure 17. 
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Figure 17: A diagram summarising the proposed method for completing Phase 3 of the project 
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6. Summary of recommendations 
 

Through the stakeholder engagement, the Discovery phase has identified the need for a set 

of electricity system relevant adverse weather scenarios, characteristic of many years of 

plausible weather, and the effect of climate change. These weather scenarios must be 

contained within whole years of gridded temperature, wind speed and solar irradiance 

information, at the same spatial-temporal resolution as gridded reanalysis data. They must 

characterise extreme adverse weather events of various extreme levels, for different regions 

of Europe, and a range of future climate change scenarios, and be relevant for a range of 

possible electricity system configurations. 

These adverse weather scenarios should be used in combination with, rather than instead 

of, existing weather data sets which are currently used to optimise electricity system design. 

These scenarios should be used as an additional ‘weather stress test’ of a designed 

electricity system, to ensure its resilience to plausible extreme weather, representative of 

future climates. In doing so, energy modellers will have increased confidence that future 

electricity system models, used to inform government policy advice and investment decision 

making, are resilient to a range of plausible adverse weather scenarios. 

Long-duration, energy shortfall and surplus events were identified as being the most 

important to study, followed by short-duration renewable generation ramping events. 

In developing these datasets of adverse weather stress events, three key questions will 

need to be addressed:  

1. How can adverse weather events be characterised using meteorological 
information?  
 

2. Could something worse than that observed in the historical period have 
plausibly happened? 
 

3. How might these adverse conditions change in future climates? 

 

For both long-duration (Phase 2) and short-duration (Phase 3) stress events, it is 

recommended that these three key questions be addressed in two stages. The first stage 

answering key question 1 and the second stage answering key questions 2 and 3. The 

proposed data sets and steps involved in completing these project phases are summarised 

in Figures 4 and 17.  

For long-duration stress events, Phase 2 (a) aims to draw upon insights from hydrological 

drought modelling and heatwave characterisation to develop a set of stress event indices 

characteristic of winter-time wind drought with below average temperatures, summer-time 

wind drought with above average temperatures, and summer-time surplus solar. These 

indices will be developed and verified using historical meteorological and energy data, as 

well as the insights of energy modellers in the project advisory and user groups. Phase 2 (b) 

will then use these derived stress event indices to explore adverse weather in the DePreSys 

and UKCP18 historical and future projections. As these are climate model data sets they 

must first be verified and calibrated, and downscaled to the required spatial-temporal 

resolution. In addition, solar information must be modelled for the DePreSys output. The final 

output of this phase of the project will be:  
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• Defined indices that can be used to identify long-duration stress events in climate 
data sets. 

• Data set of long-duration events (three forms), taken from DePreSys and UKCP18 

• 1 in 2, 5, 20, 50 and 100 year return level events in terms of stress event duration 
and severity 

• Contained within whole years of weather hourly, 30km weather data 

• For different regions and combinations of regions of Europe (e.g. North UK, South 
UK, all UK, all Europe) 

• For current climate (2020), and for 1.5, 2, 3 and 4oC warmer than the preindustrial 
climate 

 

 

For short-duration stress events, Phase 3 (a) will also develop a set of stress event indices, 

however in this phase characteristic of renewable generation ramping events (wind and 

solar). Similar to the long-duration events, these indices will be developed and verified using 

historical meteorological and energy data, as well as the insights of energy modellers in the 

project advisory and user groups. Phase 3 (b) will then use these derived stress event 

indices to explore adverse weather in the Met Office ensemble weather forecasts 

(MOGREPS-UK) and UKCP18 high resolution future projections of wind speeds and wind 

gusts. Again, this weather and climate model data will require verification and calibration. 

The final output of this phase of the project will be:  

• Defined indices that can be used to identify short-duration stress events in 

meteorological datasets. 

• Data set of short-duration events (two forms) 

• 1 in 2, 5, 20, 50 and 100 year return level events  

• For different regions and combinations of regions of UK (e.g. North UK, South UK, all 

UK) 

• For current climate (2010-2020), and possibly for future climates for wind ramping 

 

Energy modeller role  

During these project phases there will be opportunities for the energy modelling experts in 

the project advisory and user groups to help inform and verify the project outputs.  

Specifically, expertise will be drawn upon in a qualitative way when developing the stress 

event indices. For example, to help inform how the meteorological variables influence 

electricity generation and demand. Following this, the energy modellers will be given the 

opportunity to validate the derived stress event indices, by ingesting identified periods of 

historical reanalysis adverse weather within their existing energy models. This will help to 

discern whether these periods identified as stress events by the derived indices are indeed 

challenging for a range of energy models, and for the future systems that are of relevance to 

the potential users of the final adverse weather dataset.  



 
 
 

Page 50 of 57 
© Crown copyright 2020, Met Office 

Throughout the project, the energy modelling experts in the project advisory and user groups 

will also be able to test and explore the various output data sets as they become available. 

The feedback from these experts will then help to inform further stages and phases of the 

project.  

Filling in the gaps 

The literature review, completed by the Met Office in 2019, highlighted insights, and 
remaining gaps, in understanding the weather and climate related risks to the UK electricity 
system. This review identified the key types for adverse weather stress events for the 
electricity system, possible opportunities in resilience associated with utilising the spatial and 
temporal variability as well as the dependence between relevant meteorological conditions, 
and a number of existing gaps in understanding. These included the under representation of 
summer-time electricity system stress (which may become more severe in a warming 
climate due to an expected uptake in air conditioning), the absence of solar irradiance and 
climate change in many electricity system resilience studies, and the current use of limited 
historical periods of meteorological data which may not include all plausible extreme 
conditions. 
 
The outputs of the next phases of this project will build upon the insights of the literature 
review by characterising the five key types for adverse weather stress events, and by 
producing datasets that span the full European domain in a spatially and temporally coherent 
way. This will allow energy modellers to explore the identified potential opportunities in 
balancing the energy system using, for example, the dipole in meteorological conditions in 
North and South Europe, and the summer-time anti-correlation between wind speed and 
solar irradiance in the UK.  
 
The adverse weather datasets created within the project will also help to fill the gaps 
identified by the literature review, by providing events that characterise extremes in the 
summer-time, and in solar conditions (as well as winter-time and adverse wind and 
temperature events). The extreme events will also be characteristic of many more years of 
plausible weather data than is currently used, helping to better represent climate variability 
and extremes. Finally, the project will address the important gap in understanding the effect 
of climate change on electricity system resilience.   
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8. Glossary 
 

DePreSys = Decadal Climate Prediction System 

ECMWF = European Centre for Medium-range Weather Forecasting  

ERA5 = ECMWF fifth generation reanalysis data set 

EVA = Extreme Value Analysis  

GAM = Generalised Additive Model  

HadGEM3 =  Hadley Centre Global Environment Model version  

MERRA2 = Modern-Era Retrospective analysis for Research and Applications, Version 2 

MOGREPS-UK = Met Office Global and Regional Ensemble Prediction System - UK 

mslp = mean sea level pressure 

NAO = North Atlantic Oscillation  

RCP = Representative Concentration Pathway 

SARAH = Surface solar radiation data set - Heliosat 

TOA = Top Of Atmosphere  

UKCP18 = UK Climate Projections 2018 

UNSEEN = UNprecedented Simulated Extremes using Ensembles 
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