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Disclaimer

• This document is published by the Met Office on behalf of the Secretary of State for Business,
Energy and Industrial Strategy, HM Government, UK. Its content is covered by c© Crown Copyright
2021.

• This document is published specifically for the readership and use of National Infrastructure Com-
mission and may not be used or relied upon by any third party, without the Met Office’s express
written permission.

• The Met Office aims to ensure that the content of this document is accurate and consistent with
its best current scientific understanding. However, the science which underlies meteorological
forecasts and climate projections is constantly evolving. Therefore, any element of the content of
this document which involves a forecast or a prediction should be regarded as our best possible
guidance, but should not be relied upon as if it were a statement of fact. To the fullest extent
permitted by applicable law, the Met Office excludes all warranties or representations (express or
implied) in respect of the content of this document.

• Use of the content of this document is entirely at the reader’s own risk. The Met Office makes no
warranty, representation or guarantee that the content of this document is error free or fit for your
intended use.

• Before taking action based on the content of this document, the reader should evaluate it thor-
oughly in the context of his/her specific requirements and intended applications.

• To the fullest extent permitted by applicable law, the Met Office, its employees, contractors or
subcontractors, hereby disclaim any and all liability for loss, injury or damage (direct, indirect,
consequential, incidental or special) arising out of or in connection with the use of the content of
this document including without limitation any and all liability:

– relating to the accuracy, completeness, reliability, availability, suitability, quality, ownership,
non-infringement, operation, merchantability and fitness for purpose of the content of this
document;

– relating to its work procuring, compiling, interpreting, editing, reporting and publishing the
content of this document; and

– resulting from reliance upon, operation of, use of or actions or decisions made on the basis
of, any facts, opinions, ideas, instructions, methods, or procedures set out in this document.

• This does not affect the Met Office’s liability for death or personal injury arising from the Met
Office’s negligence, nor the Met Office’s liability for fraud or fraudulent misrepresentation, nor any
other liability which cannot be excluded or limited under applicable law.

• If any of these provisions or part provisions are, for any reason, held to be unenforceable, illegal
or invalid, that unenforceability, illegality or invalidity will not affect any other provisions or part
provisions which will continue in full force and effect.
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1 Executive Summary

The first National Infrastructure Assessment (National Infrastructure Commission, 2018), published by

the National Infrastructure Commission (the Commission) in 2018, recommends targeting a transition

of the UK electricity system to a highly renewable generation mix, incorporating increasing wind and

solar power capacities. This is consistent with a number of other recent reports such as the Climate

Change Committee’s Sixth Carbon Budget report (Climate Change Committee, 2020), and the Interna-

tional Energy Agency’s Net Zero by 2050 Roadmap for the Global Energy Sector (International Energy

Agency, 2021), all reflecting the need for a de-carbonised energy system to help tackle the climate crisis.

Whilst desirable, transitioning to this highly renewable mix will increase the vulnerability of the UK’s

electricity system to adverse weather conditions, such as sustained periods of low wind speeds lead-

ing to low wind generation, coupled with cold winter or high summer temperatures leading to peak

electricity demand. Consequently, the Commission want to improve understanding of the impact of ad-

verse weather conditions on a highly-renewable future system. This will support the recommendations

it makes to government and provide beneficial inputs to those that model and design future electricity

systems.

To improve this understanding, the Met Office have been working with the National Infrastructure Com-

mission and Climate Change Committee to develop a dataset of adverse weather scenarios, based

on physically plausible weather conditions, representing a range of possible extreme events, and the

effect of future climate change. This dataset will allow for proposed future highly renewable electricity

systems to be stress tested to evaluate resilience to challenging weather and climate conditions. This

insight comes at a relevant time - as reported in the Drax quarterly Energy Insights report (Staffell et al.,

2021), the start of 2021 saw unusually cold weather coupled with plant outages, creating very tight

supply margins, highlighting the need for intelligent future planning.

This report presents the development of this dataset of long-duration adverse weather scenarios. This

dataset characterises winter-time and summer-time wind-drought-peak-demand events, and summer-

time surplus generation events, in the UK and in Europe. It contains gridded daily average meteo-

rological data (surface temperature, 100m wind speed and surface solar radiation) associated with a

range of examples of such events, capturing various extreme levels (1 in 2, 5, 10, 20, 50 and 100 year

return period events) and climate warming levels (current day, 1.5◦C, 2◦C, 3◦C and 4◦C above pre-

industrial levels). The dataset is freely available to download from the Centre for Environmental Data

Analysis archive1, and a brief how-to guide for downloading the data is included at the end of this report.

Firstly, a summary of the methods developed for characterising and identifying long-duration adverse
1https://catalogue.ceda.ac.uk/uuid/7beeed0bc7fa41feb10be22ee9d10f00 (Accessed 01/06/2021)
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weather events within any suitable gridded meteorological dataset, is given. These methods are based

on insights from the energy modelling literature, and aim to be as energy system agnostic as possi-

ble. The approach taken for developing the final dataset is then presented. Adverse weather scenarios

are identified in three data sources: historical observations; historical climate model hindcasts (provid-

ing more than 2000 alternative plausible weather years) and future climate projections (capturing how

weather is likely to change in future climates). The methods developed for calibrating and imputing

these climate model data sources are presented. These steps are necessary to ensure the data is fit

for purpose.

Adverse weather scenarios identified across these three data sources are then used in combination

to quantify the extremity (i.e. the return period) of events, and how these may change in future warmer

climates. This information is subsequently used to select relevant events for the final dataset. The

sensitivity of the highly-renewable UK electricity system to climate change (particularly rising global

temperatures) is explored and discussed. This highlights how, in a UK system with high wind and solar

renewable capacity, changing the generation or demand assumptions would not materially change the

events identified as adverse, except where extreme levels of electric air conditioning for heating and

cooling are tested.

This study therefore provides a consistent approach for identifying, characterising and quantifying ad-

verse weather scenarios for highly-renewable electricity systems, while aiming to be as energy system

agnostic as possible. The resulting ‘Adverse Weather Scenarios for Future Electricity Systems’ dataset

of long-duration events is therefore relevant for stress testing a range of potential future electricity sys-

tems, ultimately helping to ensure security of supply in a future net-zero world.
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2 Introduction

The Met Office has developed a dataset of adverse weather events that can be used by energy sys-

tem modellers to test the weather and climate resilience of potential future highly renewable electricity

systems. Following on for the initial literature review (Dawkins, 2019), project scoping report (Butcher

and Dawkins, 2020), and the characterisation of long-duration adverse weather stress events (Dawkins

and Rushby, 2021), this report presents the development of the ‘Adverse Weather Scenarios for Future

Electricity Systems’ dataset of long-duration events.

As described in (Butcher and Dawkins, 2020), the final dataset is required to represent three forms

of long-duration adverse weather scenario: winter-time wind-drought-peak-demand events, summer-

time wind-drought-peak-demand events, and summer-time surplus generation events. These events

are required to be contained within whole years of gridded meteorological data, for different regions (UK

and Europe), at various extreme levels (1 in 2, 5, 10, 20, 50 and 100 year return period events), and for

different climate warming levels (current day, 1.5◦C, 2◦C, 3◦C and 4◦C above pre-industrial levels).

Basing this adverse weather dataset on the historical observed record only, i.e. the ERA5 reanaly-

sis data set (Hersbach et al., 2018), may only capture a narrow range of plausible weather conditions,

and will not represent how such events may change in future climates. Therefore, methods previously

developed for characterising and identifying long-duration adverse weather scenarios (Dawkins and

Rushby, 2021), are applied to two additional data sources. Namely, the Met Office Decadal Predic-

tion System (DePreSys)2 hindcast (Dunstone et al., 2016), providing 40 alternative realisation of the

historical period 1959-2016, and hence additional plausible weather conditions, and the UK Climate

Projections (UKCP18) (Lowe et al., 2018), representing how weather is likely to change in the future

as a result of climate change. The adverse weather scenarios identified in these three data sources

are used in combination within a non-stationary statistical extreme value analysis (EVA) to quantify the

likelihood (i.e. the return period) of events, and how these may change in future warmer climates. The

results of this analysis are then used to pick relevant adverse weather scenarios from the DePreSys

and UKCP18 datasets, to be used to represent the various required extreme levels and warming levels

within the final dataset.

The DePreSys and UKCP18 data sources are both derived from climate models, hence methods are

developed for validating, calibrating and imputing the data where necessary. This ensures, for example,

that the climate model data is not too hot or too windy on average. Specifically, a univariate variance

scaling approach is used to bias correct the model data, and data science generalised additive models

are developed to estimate 100m (above ground) wind speed from 10m wind speed, and to estimate

surface solar radiation coherently with other DePreSys weather variables. In addition, in both cases the
2A glossary of acronyms is presented in Section 8
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climate model data is available on a 60 km × 60 km, daily spatial-temporal resolution, hence methods

for downscaling in space and time are explored.

This report firstly summaries the approach developed for characterising long-duration adverse weather

scenarios, as previously published in Dawkins and Rushby (2021). The method for creating the final

dataset of long-duration adverse weather scenarios for future electricity systems is then presented.

Initially, the two climate model datasets (DePreSys and UKCP18) are introduced, and the methods for

calibrating and imputing them are described. The adverse weather scenarios identified in the three data

sources are then compared and explored. Following this, the statistical EVA method used to quantify

the likelihood of adverse weather scenarios in different climates is presented, and the approach used

to select relevant periods of adverse weather for the final dataset, based on this analysis, is given. Fi-

nally, a full specification of the final ‘Adverse Weather for Future Electricity Systems’ dataset is provided,

along with a brief how-to guide on how to download the dataset from the Centre for Environmental Data

Analysis (CEDA) archive.
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3 Summary of Phase 2 (a): Characterising long-duration adverse

weather events

The Phase 2 (a) report (Dawkins and Rushby, 2021) presents the development and validation of an ap-

proach for characterising adverse weather events using meteorological data, focusing on long-duration

wind-drought-peak-demand and surplus generation events. This method was applied to 40 years of his-

torical (1979-2018) meteorological data taken from the ERA5 meteorological reanalysis dataset (Hers-

bach et al., 2018), and the resulting adverse weather events within the historical report were presented.

Since these adverse weather events occur when electricity generation and demand are high or low,

methods for estimating electricity generation and demand from weather data were first developed.

These representations of electricity generation and demand were then used to quantify unfavourable

conditions through adverse weather metrics. In doing so, this approach draws on insights from the elec-

tricity modelling literature, such as Bloomfield et al. (2019), hydrological drought modelling literature,

such as Burke et al. (2010), and the expertise of the project advisory and user groups.

The following section provides a brief summary of the Phase 2 (a) approach to give context for the

application of these methods in Phase 2 (b), as presented in Sections 4 and 5. Please refer back to the

Phase 2 (a) report for further detail (Dawkins and Rushby, 2021).

3.1 Estimating Weather Dependent Electricity Demand

Weather dependent demand (WDD)3 is estimated from 2m above group (surface) air temperature data

using the same method as developed by Bloomfield et al. (2019) (documented in their supplementary

material). The relationship between temperature and weather dependent demand is modelled as being

linear, with a different gradient below and above certain thresholds, representing the increase in heating

or cooling demand with temperature. This is implemented using the following metrics:

1. Heating degree days (HDD): When regional daily average temperature is below the chosen heat-

ing threshold (15.5◦C), HDD is equal to the heating threshold minus the temperature on that day,

and zero otherwise.

2. Cooling degree days (CDD): When regional daily average temperature is above the chosen cooling

threshold (22.0◦C), CDD is equal to the temperature on that day minus the cooling threshold, and

zero otherwise.

The WDD in a given country is then calculated as a function of the regional baseline electricity demand,

HDD and CDD. These three parameters are different for each country, as presented in the supplemen-

tary material of Bloomfield et al. (2019) and in Table 10 of Dawkins and Rushby (2021).
3A glossary of acronyms is presented in Section 8

c© Crown Copyright 2021, Met Office 7 of 85



As described in (Butcher and Dawkins, 2020), the latest UK climate projections released by the Met

Office in November 2018 (Lowe et al., 2018) show a clear increasing signal in UK temperatures. In

particular, summer maximum temperatures are on average likely to rise by 2-3◦C in the south of the

UK by 2100. Indeed, Sanderson et al. (2016) show how, by the mid-21st century, southern and central

England and Wales are likely to have climates analogous to the current climate of northern and western

France. This change in the future UK climate is likely to change cooling demand within the UK, with

more people using air conditioning to improve their comfort during the hotter summers. For this reason,

in this study, the UK demand model of Bloomfield et al. (2019) is modified to incorporate the cooling

slope of the French model (taken to be an analogue for the UKs future climate). This is done to ensure

that the increased demand for cooling in the UK, as a result of the rising summer-time temperatures, is

captured when applying the method to future climate projections (See section 4.3).

3.2 Estimating Wind Electricity Generation

Regional daily wind renewable electricity generation is calculated using 100m wind speed data, to rep-

resent wind speed at turbine hub height. As in Bloomfield et al. (2019), the ERA5 100m wind speed

data is bias corrected in each grid cell using the Global Wind Atlas4. For a given grid cell and day, the

wind capacity factor, defined as the proportion of a turbines maximum possible generation, is calculated

by applying a turbine power curve to the daily average wind speed in that grid cell. Here, the same 3

turbine power curves as presented in Bloomfield et al. (2019) are used. These represent the type 1, 2

and 3 turbines from the International Electrotechnical Commission (IEC) wind speed classification (IEC,

2005).

In each land grid cell, the most appropriate turbine (of these three options) is chosen. As in Bloom-

field et al. (2019), the selected turbine type is the one that maximises the wind capacity factor for the

40-year (1979-2018) mean of the bias corrected 100m wind speed in that grid cell, and it is assumed

that all of the turbines within a given grid cell are of the same type. The wind power capacity factor is

then weighted by the installed wind capacity within the grid cell (as a fraction of the national total) and

then aggregated over a region/country. The potential for installed wind capacity within each grid cell in

Great Britain is based on technical, social and environmental restrictions explored by Price et al. (2018),

Moore et al. (2018) and Price et al. (2020), with a more simplistic approach across the rest of Europe

(turbines could be located anywhere onshore other than urban areas).

Finally, for a given day, the regional total wind generation is calculated by multiplying the daily regional

capacity factor by the national level of installed wind power. The current day national level of installed

wind power in each country can be obtained from the thewindpower.net website. Since this study is

concerned with capturing adverse weather events for a highly-renewable electricity system, the current
4https://globalwindatalas.info (Accessed 29/04/2021)
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day national levels of installed wind power are scaled up to represent a plausible highly-renewable future

as of 2050. Specifically, a national installed capacity of 120GW is employed for the UK and 600GW for

Europe as a whole (with the proportion of European installed capacity in each country consistent with

current day).

3.3 Estimating Solar Electricity Generation

Regional daily solar generation is calculated from surface air temperature and incoming surface solar

radiation. Firstly, on a given day and within a given land grid cell, the solar power capacity factor, defined

as the proportion of a solar panels maximum possible generation produced, is calculated based on a

linear function of the surface temperature and incoming surface solar radiation, as in Bett and Thornton

(2016). Similar to the wind generation calculation, the solar capacity factor is then weighted by the

installed solar capacity within that grid cell (as a fraction of the national total). Within each grid cell, this

installed solar capacity is based on the potential location of solar renewables, as defined by Price et al.

(2018) for Great Britain, and using a simplistic approach of a uniform distribution for the rest of Europe

(i.e. it is assumed that solar renewables can be installed anywhere, as in Bloomfield et al. (2019)).

Finally, for a given day, the regional total solar generation is calculated by multiplying the daily regional

capacity factor by the national level of installed solar renewables. The current day national level of in-

stalled solar in each country can be obtained from the National Generation Capacity Data Platform5.

Similar to the wind generation calculation, a plausible highly-renewable future as of 2050 is represented

here, by employing a national installed capacity of 100GW in the UK, and 800GW for Europe as a whole

(again such that the proportion of European installed capacity in each country is consistent with current

day).

3.4 The Wind-Drought-Peak-Demand Index (WDI)

The method for calculating the WDI is shown in the schematic in Figure 1.The estimates of daily weather

dependent demand (Section 3.1) and daily wind generation (Section 3.2) are used to calculate daily

Demand-Net-of-Renewables (DNR) for each county, defined as daily weather dependent demand mi-

nus wind generation. This DNR metric therefore represents how much of the daily demand must be

met by energy sources other than wind renewables. Hence, in a highly renewable electricity system,

stressful meteorological days will be associated with positive values of this metric, and adverse weather

events will be associated with periods of time when this metric is particularly high.

Borrowing insights from hydrological drought modelling (Burke et al., 2010), in which drought is char-

acterised by accumulating rainfall over several months, here the DNR metric is accumulated over every

7 day period, representing how ‘bad the previous week has been in terms of weather dependent DNR.
5https://data.open-power-system-data.org/national_generation_capacity/ (Accessed 13/01/2021)
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This is then scaled by its long-term average and standard deviation to give the final WDI.

The WDI is used to identify periods of adverse weather, based on when the WDI exceeds a high thresh-

old. These ‘events can then be quantified in terms of duration and severity, and particular events related

to relevant return periods (e.g. 1 in 20 year event) in terms of their duration and severity can be identified.

The duration is the number of days over which the WDI exceeds the adverse weather threshold, and the

severity is the accumulated difference between the WDI and the threshold over the duration of the event.

A different threshold is used in winter (October - March) and summer (April - September). Specifi-

cally, the threshold is defined as the 90th percentile of summer-time WDI in the summer (over the 40

historical years of data), and equivalently the 90th percentile of winter-time WDI in the winter. This

means that 10% of summer days and 10% of winter days within the period of interest will be classed as

adverse, ensuring that an equal proportion of events occur in each season.

3.5 The Surplus-Generation-Index (SGI)

The method for calculating the SGI is shown in the schematic in Figure 2. Daily weather dependent

demand (Section 3.1), daily wind generation (Section 3.2), and daily solar generation (Section 3.3) are

used together to calculate daily Renewables-Net-of-Demand (RND), defined as wind generation plus

solar generation, minus weather dependent demand. This allows the characterisation of surplus gen-

eration adverse weather events via the SGI. These events occur within a region when wind speed and

solar radiation are high, leading to high renewable electricity generation; and temperatures are moder-

ate to high/low, leading to low heating/cooling demand in winter/summer. This form of adverse weather

event is explored in the summer time only (as specified in the scoping phase of this project Butcher and

Dawkins 2020).

Similar to the WDI, the SGI is based on the difference between generation and demand (here RND)

accumulated over every 7-day period (scaled by its long-term average and standard deviation), repre-

senting how bad the previous week has been in terms of accumulating surplus renewable generation

net of weather dependent demand. Again, this metric is used to identify periods of adverse weather

based on exceedance of its 90th percentile. While summer-time (April-September) surplus generation

events are the main focus of this analysis, the SGI is calculated for the whole year, using a different

seasonal threshold (as in the WDI), so that events that start in summer months but continue on into the

winter can be fully captured. These identified surplus generation events can then be quantified in terms

of duration and severity and particular events related to relevant return periods (e.g. 1 in 20 year event)

can be identified.

As these events are based on both wind and solar generation, the relative contribution of each form

of generation to the overall accumulated surplus generation (i.e. the SGI) is also quantified. This metric

c© Crown Copyright 2021, Met Office 10 of 85



Regional Daily Weather Dependent Demand 

1. For each day, calculate average 
temperature over land in the 
region (e.g. UK), using gridded 
temperature data (e.g. ERA5)

Temp 
(oC)

2. Use the 
national demand 
model to 
calculate 
weather 
dependent 
demand 
associated with 
that temperature 
(e.g. 50GW)

Regional 
average 
temperature on 
a given day

Regional demand 
on that day

3. Repeat 
for each 
day (e.g. 
winter 
2010/11)

Regional Daily Wind Generation

The Wind-Drought-Peak-Demand Index  

1. Bias correct 100m gridded wind 
speed data (e.g. ERA5)

100m wind 
speed (m/s)

Grid cell wind 
speed on a 
given day

Associated 
grid cell 
capacity 
factor on 
that day

2. For each grid cell in the region (e.g. UK), 
and each day, calculate the wind capacity 
factor using the assign wind turbine power 
curve in that grid cell

3. To calculate regional daily wind generation, 
multiply the wind capacity factor in each grid cell 
by the grid cell installed wind capacity weighting, 
aggregate over the whole region, and multiply by 
the regional total installed wind capacity

4. Repeat for each day (e.g. winter 2010/11)

1. For the region of interest (e.g. UK), 
calculate Demand Net of Renewables as 
demand minus wind generation on each day

2. Calculate the 7-day accumulated demand 
net of renewables by aggregating over each 
7 day period 

3. Calculate the Wind-Drought-Peak-
Demand index by scaling the 7-day 
accumulated demand net of renewables by 
its long-term average and standard 
deviation. Identify events as times when the 
index exceeds its 90th percentile, and 
calculate event durations and severities

Event 
duration

Event severity (shaded area)90th percentile of WDI

Wind 
speed 
in one 

grid 
cell

Turbine 
power 
curve

Figure 1: A schematic demonstrating the step-by-step methods used to (top panel) calculate regional daily weather dependent demand, (middle
panel) calculate regional daily wind renewable electricity generation, and (bottom panel) calculate the wind-drought-peak-demand event index,
identify adverse weather events, and calculate their duration and severity.
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can be used to help identify events of interest within the final dataset e.g. those that are more associated

with wind or solar generation.

Regional Daily Solar Generation

1. Calculate daily average incoming 
solar radiation and surface 
temperature for land grid cells over 
a region (e.g. from ERA5)

Solar radiation 
(kWh/m2)

2. For each grid cell in the region (e.g. UK), and 
each day, calculate the solar capacity factor
from solar radiation and temperature using 
the solar model of Bloomfield et al. (2019)

3. To calculate regional daily solar generation, 
multiply the solar capacity factor in each grid cell 
by the grid cell installed solar capacity weighting, 
aggregate over the whole region, and multiply by 
the regional total installed solar capacity

4. Repeat for each day (e.g. summer 2011)

Surface temperature and solar 
radiation in one grid cell

Temp 
(oC)

Grid cell solar 
radiation on a 
given day

The Surplus Generation Index  

1. For the region of interest (e.g. UK), 
calculate Renewables Net of Demand as 
wind generation plus solar generation minus 
demand on each day

2. Calculate the 7-day accumulated 
renewables net of demand by aggregating 
over each 7 day period 

3. Calculate the Surplus Generation index 
by scaling the 7-day accumulated 
renewables net of demand by its long-term 
average and standard deviation. Identify 
events as times when the index exceeds its 
90th percentile, and calculate event 
durations and severities

Event 
duration

Event severity 
(shaded area)

90th percentile of SGI

Figure 2: A schematic demonstrating the step-by-step methods used to (top panel) calculate regional daily solar renewable electricity generation,
and (bottom panel) calculate the surplus generation event index, identify the associated adverse weather events, and calculate their durations and
severities.
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3.6 Sensitivity Study

The electricity system settings used within the methodology for characterising adverse weather were

tested in a sensitivity study. The input settings were adjusted and the methods repeatedly applied to

the 40 years of ERA5 meteorological data to explore the differences in the resulting identified events.

For wind-drought-peak-demand events, the national installed capacities, turbine power curve, WDI ac-

cumulation period and study region are varied. The sensitivity study showed that the adverse weather

events identified using the various settings are largely consistent, particularly when highly-renewable

national installed capacities are considered. This gives greater confidence that the WDI definition de-

scribed in Section 3.4 is largely robust to these subjective choices. That is, the WDI metric provides a

method for identifying representative periods of adverse weather, relevant for testing the resilience of a

range of electricity system configurations.

The results also indicated that, in general, adverse weather events are different in the two regions

(UK and Europe), supporting the need for producing separate datasets of adverse weather events for

each region. However, some events were found to be widespread enough to significantly impact all of

Europe and the UK.

A similar sensitivity study was undertaken for the SGI, however for consistency with the WDI, the chosen

UK demand model and the estimated 2050s national installed level of wind capacity in each European

country were held constant. This sensitivity study therefore explored the sensitivity of the SGI to varying

the national installed level of solar capacity. The study found the SGI, and hence the identified events,

were very similar across all settings. Further exploration of the output identified this to be due to the

relative dominance of wind generation in the SGI calculation, particularly in the UK.

Further detail on the results of the sensitivity study for the different settings can be reviewed in Section

4.1 of the Phase 2 (a) report (Dawkins and Rushby, 2021).
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4 Developing the dataset of long-duration adverse weather sce-

narios for future electricity systems

As highlighted in the ‘Weather and Climate Related Sensitivities and Risks in a Highly Renewable UK

Energy System’ literature review (Dawkins, 2019), a limitation of many electricity system studies is the

use of the relatively short historical observed record of meteorological data. In using this observed

record only, natural climate variability and anthropogenic climate change are not adequately captured,

which may lead to the under- or over-estimation of plausible extreme stress on the electricity system.

That is, it may be physically plausible to observe a weather event more extreme than that experienced in

the historical record, but that it just hasn’t been observed within the limited record. Further, future global

warming is likely to impact electricity system relevant meteorological variables, particularly temperature,

which could lead to a change in the extremity of adverse weather scenarios.

To better capture alternative plausible weather conditions and anthropogenic climate change within

the final dataset of long-duration adverse weather events, events are identified in two data sources,

in addition to the ERA5 historical reanalysis (used in Phase 2(a) for event characterisation). Namely,

historical climate model hindcasts (retrospective forecasts), which provide more than 2000 alternative

plausible historical weather years; and future climate projections, capturing how weather is likely to

change in future climates. These data sources are both derived from climate models, hence steps must

be taken to validate, calibrate and impute the data where necessary to ensure the characteristics of the

data (e.g. the average and variability) are consistent with the equivalent meteorological variables in the

observed record. For example, to ensure that the climate model derived data is not biased to being too

hot or too windy on average.

This section firstly introduces these two additional sources of data in more detail. The methods de-

veloped for validating, calibrating and imputing this data are then presented and discussed. Following

this, adverse weather events identified within all data sources, characterising each event type (winter-

time wind drought, summer-time wind drought and summer-time surplus generation), in both the UK

and Europe as a whole, are explored and discussed. A statistical EVA6 is then carried out to quantify

the return period of events (e.g. 1 in 10 year event) at different future global warming levels, and an

approach for using this quantification to select relevant events from the final dataset is presented.
6A glossary of acronyms is presented in Section 8
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4.1 Data sources

4.1.1 DePreSys Hindcasts

The Met Office Decadal Prediction System (DePreSys)7 has been used to produce a hindcast (ret-

rospective forecast) dataset. This is made up of global ocean-atmosphere simulations, run freely for

many ‘model’ months to produce new outcomes away from observations. Specifically, the model has

been run 40 times for each year 1959 - 2015, initialised in November. This provides 2280 model years

of plausible weather, more than 40 times the data available from the ERA5 reanalysis dataset, which

is representative of the observed historical conditions only. The DePreSys dataset has been found to

produce ‘unseen’ but plausible meteorologist conditions, more extreme than those seen in the histori-

cal record (Thompson et al., 2017). By applying the WDI and SGI to the DePreSys dataset, plausible

adverse weather events, more extreme than those observed in the historical period, could be identified,

providing additional relevant relevant for resilience testing (see Section 4.3). In addition, incorporat-

ing adverse weather events identified within these 2280 years greatly increases the size of the sample

used in the statistical EVA, reducing the uncertainty in high return period estimated (see Section 4.4).

It should be noted, however, that because the hindcasts are re-initialised each year based on observed

conditions (e.g. the observed sea surface temperature), they are not a full expression of the possible

natural variability in the ocean-atmosphere system. That is, they are not run freely for the full 57 year

period, and hence may underestimate the true climate variability.

The DePreSys data set contains mean daily 60km gridded data for the following weather variables:

1. Surface air temperature;

2. Wind ‘U’ (east-west) and ‘V’ (north-south) components at 10m above the ground, which can be

used to calculate 10m above ground wind speed8;

3. Mean Sea Level Pressure.

As described in Section 3, for this study, weather dependent electricity demand is calculated from

surface temperature, wind generation from 100m wind speed, and solar generation from solar radiation

and surface temperature. These energy demand and generation values are then used to calculated

the WDI and SGI, allowing for adverse weather events can be identified. Therefore, to allow for the

DePreSys dataset to be used within this study, 100m above ground wind speed and solar radiation

must be estimated coherently with the available meteorological variables. The methods developed for

this, and for calibrating the existing variables, are explained and validated in Section 4.2.
7https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/depresys

(Accessed 01/06/2021)
8http://colaweb.gmu.edu/dev/clim301/lectures/wind/wind-uv (Accessed 19/05/2021)
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4.1.2 UK Climate Projections 2018 (UKCP18)

The United Kingdom Climate Projections (UKCP18) provide the most recent assessment of how the

climate may change in the future (Lowe et al., 2018). They are based on the latest peer-reviewed

climate science, inclusive of model data from both the Met Office Hadley Centre and other international

climate-modelling centres. There are 28 global climate model (GCM) simulations providing worldwide

coverage at a 60km horizontal resolution for the historical and future periods from 1900-2100. They are

separated into two ensembles as they sample uncertainty in different ways:

1. The perturbed physics ensemble (PPE) is made up of 15 variants of the Met Office Hadley Centre

model (hereafter referred to as PPE-15). The PPE-15 is created by perturbing a set of parameters

within a single land/ocean model to sample a broad range of future outcomes in a systematic way.

2. The Coupled Model Intercomparison Project (CMIP) ensemble is made up of 13 models, produced

by 13 separate institutions, from CMIP Phase 5 (hereafter referred to as CMIP-13). Since the

models are created independently there is more scope to sample different sources of uncertainty.

The PPE-15 ensemble allows for a quantification of uncertainty owing to parameter uncertainties (how

fast ice falls in clouds, for example), while the CMIP-13 ensemble allows for a quantification of uncer-

tainties owing to structural model choices (the type of land and ocean models used, for example).

The availability of individual variables from CMIP-13 is dependent on whether the data was saved out

by the institution. Unfortunately, daily and monthly solar radiation data is not available from any of the

CMIP-13 models, wind speed is unavailable for four models and over an insufficient time period for a

fifth. Due to these data availability issues, and in order to maintain consistency across the demand, wind

and solar generation models in the uncertainty sampled, only the PPE-15 ensemble is used in this study.

Note that UKCP18 also has a suite of 12 regional climate model (RCM) simulations available at a

12km horizontal resolution; driven by 12 of the global PPE-15, which are dynamically downscaled.

These have not been used in this study: whilst these simulations do provide additional value by better

resolving physiographic features and simulating daily spatial detail of meteorological variables (Murphy,

J. M. et al., 2018), the analysis at regional level looking at long duration events does not require such

level of detail, and maintaining consistency in the resolution with other datasets of meteorological data

is of a higher priority (the DePreSys dataset and ERA5 regridded data used for bias correction in the

next section are both at a 60km resolution). Furthermore, there is a small reduction in the uncertainty

sampled in the RCM suite (12 simulations rather than 15).

4.2 Data calibration

While these data sources provide a number of advantages in their representation of additional plausible

weather years and the effect of climate change, they pose limitations in terms of climate model biases,
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the availability of meteorological variables, and spatial and temporal resolution. As a results, the De-

PreSys and UKCP18 data must undergo calibration to ensure they are fit for purpose.

Throughout, the data calibration uses the ERA5 reanalysis dataset as the observed ‘truth’. The ERA5

data is on a 30km-hourly spatial-temporal resolution, and hence is regridded and temporally averaged to

the same 60km-daily resolution as the DePreSys and UKCP18 datasets to allow for a direct comparison

within this calibration. Bilinear interpolation9 is used to regrid the ERA5 temperature, wind speed and

mean sea level pressure data, while an area-weighted method10 is used for solar radiation to ensure

that the amount of radiative flux received over an area is preserved. In addition, the ERA5 100m wind

speeds have been corrected using the Global Wind Atlas (as in Bloomfield et al. (2019) and descried in

Dawkins and Rushby (2021)).

4.2.1 Bias correction of 10m wind speed, surface temperature and mean sea level pressure

Both the DePreSys and UKCP18 datasets are derived from climate models, which are imperfect repre-

sentations of the physical climate system. As such, this data is likely to contain biases when compared

to observations, for example conditions may be generally too hot or too windy.

DePreSys

When identifying adverse weather scenarios within the DePreSys hindcasts, surface temperature will

be used to calculate energy demand; 10m wind speed data will be used to estimate 100m wind speed

(see Section 4.2.2), which will be used to calculate wind renewable generation; and mean sea level

pressure will be used to produce fields of solar radiation that are coherent with the other DePreSys

variables (see Section 4.2.3), which will subsequently be used to calculate solar renewable generation.

Therefore, within the DePreSys hindcast dataset, surface temperature, 10m wind speed and mean sea

level pressure must be bias corrected.

Figure 3 shows the difference in the grid cell daily mean (average) and standard deviation (variabil-

ity) of surface temperature, 10m wind speed and mean sea level pressure, when calculated based on

the ERA5 data and the DePreSys hindcast data for all January days in the period 1979-2018. These

plots show how, for example, the DePreSys data is biased to being too cold on average in some parts

of Europe (particularly Norway), and not windy enough on average over much of the North Sea and

Scandinavia.

A variance scaling method is used to bias correct the data (see section 3.1.6 of Luo et al. 2018). This

form of univariate bias correction method adjusts the mean and standard deviation of the DePreSys data
9https://www.sciencedirect.com/topics/engineering/bilinear-interpolation (Accessed 29/04/2021)

10https://scitools.org.uk/iris/docs/v1.10.0/userguide/interpolation_and_regridding.html$#

$area-weighted-regridding (Accessed 29/04/2021)
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Figure 3: Spatial maps of the difference between the DePreSys and ERA5 grid cell mean (a,c,e) and standard deviation (b,d,e) for surface tempera-
ture (top row), 10m wind speed (middle row) and mean sea level pressure (bottom row), for all January days in the period 1979-2018. In each case
the difference is calculated as DePreSys minus ERA5, meaning that a value above zero implies the DePreSys data is bias to being too high, and a
value below zero implies the DePreSys data is bias to being too low.

in each grid cell and meteorological variable separately, such that it is equal to the mean and standard

deviation of the equivalent grid cell and variable in the ERA5 data. The biases in the DePreSys data

vary with the time of the year, hence this bias correction is applied to each month of the year separately

(i.e. all January days in the period separately from all February days).

Figure 4 demonstrates this bias correction in each variable in January, for a single grid cell in the UK.

These plots show how the distribution of the DePreSys data (orange) is adjusted by the variance scaling

method to ensure the mean and standard deviation is consistent with the distribution of the equivalent

ERA5 data (blue). For example, in Figure 4 (a) and (b), the DePreSys data is shifted slightly to the right

to increase temperatures and wind speed, both identified as being biased too low on average compared
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Figure 4: For (a) surface temperature (b) 100m wind speed and (c) mean sea level pressure, histograms comparing the distribution of ERA5 and
DePreSys January data in a single UK grid cell, for the original (non-bias corrected) DePreSys daat (left), and for the bias corrected DePreSys data
(right).
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to ERA5 in Figure 3.

The bias correction method applied here is a univariate method, meaning that it is applied to each grid

cell and variable separately. This makes the assumption that the temporal, spatial and inter-variable

dependence in the DePreSys data is physically consistent and hence does not need to be corrected.

This assumption is thought to be reasonable because the DePreSys data is derived from a physical cli-

mate model. Multivariate bias correction methods allow for multiple variables and locations to be biased

corrected together, also allowing any biases in these dependences to be corrected. The application of

such methods to large climate and weather datasets (such as these) is known to be computationally

challenging and cause over-fitting (Cannon, 2018), and hence applying such methods was found to be

beyond the scope of this study. The final DePreSys weather data, used to identify adverse weather

scenarios, derived from the data bias corrected here are comprehensively validated in Section A.1,

showing how the temporal, spatial and inter-variable dependences in the ERA5 data are captured well

by the calibrated DePreSys data. These plots (Figures 31 - 42) show that applying a univariate bias

correction does not cause any unusual dependence structures within the resulting data.

UKCP18

For the UKCP18 data, the bias correction is achieved using a ‘built-in’ approach within the statisti-

cal EVA applied to the adverse weather scenarios (explained further in Section 4.4 and based on the

method of Brown et al. (2014)). This EVA bias correction method is applied to the duration/severity of

adverse weather events themselves rather than the underlying meteorological variable. However, since

wind generation is calculated from wind speed data using a non-linear wind power curve (Figure 1), any

biases in the wind speed data will be greatly amplified by the power curve. For this reason, the UKCP18

10m wind speed data is bias correct prior to identifying the adverse weather events. The same variance

scaling method is used to bias correct this 10m wind speed data from UKCP18, using ERA5 as the truth.

In addition, the variance scaling bias correction method assumes stationarity (i.e. that the variable

being corrected is not systematically changing over time). This assumption is seen to be acceptable for

UKCP18 wind speed data, which does not show a clear change in the future in the UKCP18 projections

(Lowe et al., 2018), but would not be acceptable for UKCP18 surface temperature, which has been

shown to increase in the future (Lowe et al., 2018; Murphy, J. M. et al., 2018). This therefore neces-

sitates the bias correction of UKCP18 surface temperature using an alternative approach which allows

for non-stationarity (changes over time) to be retained, such as the EVA approach described above and

in Section 4.4.

Applying the variance scaling bias correction to UKCP18 10m wind speed data achieves equivalent

consistencies with the mean and standard deviation of ERA5 as shown for DePreSys in Figure 4. This
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Figure 5: Spatial maps of the mean 10m wind speed in each 60 km grid cell, calculated for (a) ERA5, (b) bias corrected DePreSys and (c) bias
corrected UKCP18, over the full period of each dataset.

is evidenced in the similarity between the ERA5 and UKCP18 mean 10m wind speed across Europe in

Figure 5 (a) and (c), also consistent with the DePreSys 10m wind speed mean shown in Figure 5 (b).

4.2.2 Representing 100m wind speed

Wind generation calculations require turbine height wind speeds, generally around 100m above ground.

The wind speed data available in DePreSys and UKCP18 is 10m above the ground, so a method must

be developed to scale this wind speed data to the 100m above ground height. Existing methods such

as the log law11 and power law12 can be used to scale wind speed from one height to another, however

these make assumptions about the surface roughness or wind shear exponent. In addition, discussions

with experts within the Met Office highlighted how these laws may not hold as well for low wind speeds,

which are particularly important when investigating wind droughts in this study.

An alternative approach, commonly used to correct and adjust wind data (e.g. Dunstan et al. 2016), is

to employ a data science modelling technique to represent the relationship between the two wind speed

heights (here 10m and 100m) within a dataset that contains both levels (e.g. ERA5), and then use this

relationship to scale the data within another dataset that just contains one level (here DePreSys and

UKCP18). In this case, a data science method known as Generalised Additive Modelling (GAM)13 is

used. This type of model aims to represent a response/target variable (here 100m wind speed) using a

combination of smooth functions of other variables (e.g. 10m wind speed).

Figure 6 shows the relationship between daily mean 10m and 100m above ground wind speed, taken

from the ERA5 dataset, for a single 60 × 60 km grid cell. This figure shows how there is a strong linear

relationship between 10m and 100m wind speed, that varies slightly by season. To capture these ob-

served relationships, the GAM is structured such that the response/target variable (100m wind speed)

is estimated based on 10m wind speed and ‘day of the year’. Additional explanatory variable are also

included to help improve the predictability of the model (i.e. how well 100m wind speed is estimated

from other variables). Since the aim it to apply the GAM to the DePreSys data to allow for 100m wind
11http://www.met.reading.ac.uk/~marc/it/wind/interp/log_prof/ (Accessed 02/06/2021)
12https://websites.pmc.ucsc.edu/~jnoble/wind/extrap/ (Accessed 02/06/2021)
13https://datascienceplus.com/generalized-additive-models/ (Accessed 24/05/2021)

c© Crown Copyright 2021, Met Office 21 of 85

http://www.met.reading.ac.uk/~marc/it/wind/interp/log_prof/
https://websites.pmc.ucsc.edu/~jnoble/wind/extrap/
https://datascienceplus.com/generalized-additive-models/


Figure 6: The relationship between daily average 10m and 100m (above ground) wind speed, taken from ERA5 (bias corrected and re-gridded as
explained at the beginning of Section 4.2 and Section 4.2.1), for the period 01/01/1979 - 31/12/2018 in a single 60 × 60 km grid cell. Each data point
is a day within the record, and each is coloured according to the season that day falls in: Autumn (Sept-Nov), Winter (Dec-Feb), Spring (Mar-May)
and Summer (Jun-Aug).

speed to be estimated for this dataset, these additional variables must be available within the DePreSys

hindcasts (see Section 4.1.1). Hence, the grid cell surface temperature and the year are included as

additional explanatory variables. In addition, the relationship between 10m and 100m wind speed is

found to vary with location (due to differences in surface orography). For this reason, a separate GAM

model is trained for each grid cell in the European domain.

Figure 7 presents an example of the GAM, trained on the ERA5 data in a single grid cell. The four

plots shows the smooth function fitted to each of the explanatory variables (10m wind speed, tempera-

ture, day of the year and year). These show how, as well as the strong relationship between 10m and

100m wind speed seen in Figure 6, there is a linear relationship between temperature and 100m wind

speed (as temperature increases so does 100m wind speed), and a non-linear relationship with the day

of the year (100m wind speed is generally lower in summer/autumn). Similar relationships are found in

other grid cells. These four smooth functions can be used to predict 100m wind speed based on these

four variables, by summing f(variable), where the value of the variable is representative of that given day

(i.e. the 10m wind speed, temperature, day of year and year).

A cross-validation method is used to validate this model. The GAM is trained on a subset of the ERA5

data (80%), and then used to estimate 100m wind speed for the remaining 20% of the (un-modelled)

test data. An example of the relationship between the predicted and true 100m wind speed in one grid

cell is presented in Figure 8 (a). This shows how the model is able to very accurately estimate 100m

wind speed from the four explanatory variables. Specifically, in this grid cell 98.8% of the variance in

the 100m wind speed data is explained by the GAM model, with 100% equating to perfect predictability.

A similarly high proportion of the variance is explained (high predictability is achieved) in GAMs trained
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Figure 7: A graphical representation of the the Generalised Additive Model trained on ERA5 data in a single grid cell. Each of the four plots
shows the smooth function fitted to each of the explanatory variables (10m wind speed, temperature, day of the year and year), which are used in
combination (summed together) to estimate the response/target variable (100m wind speed). In each plot the ticks along the x axis show where the
data lies along this dimension.

Figure 8: (a) Scatter plot of ‘true’ daily average 100m wind speed from ERA5, and the associated predicted daily average 100m wind speed from
the GAM based on 10m wind speed, surface temperature, day of the year and the year, for the cross validation test data in grid cell: longitude 2.5
and latitude 51.7. (b) A map of the proportion of variance in 100m wind speed explained the GAM fitted to each variable in the UK region, where a
value of 0.996 represents 99.6% of the variance being explained. This value is also know as the coefficient of determination or R-squared.

on each grid cell of the European region, a subset of which are shown in Figure 8 (b).
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Figure 9: Spatial maps of the mean 100m wind speed in each 60 km grid cell, calculated for (a) ERA5, (b) predicted from GAM for DePreSys and
(c) predicted from GAM for UKCP18, over the full period of each dataset.

These grid cell GAMs are subsequently applied to the 2280 model years of DePreSys historical hind-

cast data. The bias corrected daily mean surface temperature and 10m wind speed (see Section 4.2.1)

are used with the temporal variables ‘day of the year’ and ‘year’, within the GAM smooth functions, to

predict the associated daily mean 100m wind speed value. As shown in Figure 9 (a) and (b), this pro-

vides DePreSys 100m wind speed values that are consistent on average with ERA5 data, and hence

can be used to estimate wind generation within this study. This estimated 100m wind speed data is

further validated in Section A.1. Figures 31 - 42 show how the inter-variable, spatial and temporal vari-

ability of this estimated DePreSys 100m wind speed data is very similar to that seen in the ERA5 record.

Figure 10: Scatter plot of ‘true’ daily average 100m wind speed from ERA5, and the associated predicted daily average 100m wind speed from the
GAM based on 10m wind speed and moth of the year, for the cross validation test data in grid cell: longitude 2.5 and latitude 51.7.

In a similar way, the UKCP18 daily average 10m wind speed data is scaled to the 100m level. In this

case, a slightly different GAM is trained on the ERA5 data. This must be done because the UKCP18 sur-

face temperature data has not yet been bias corrected (as explained in Section 4.2.1), hence it cannot

be used as an input in the GAM. In addition, the UKCP18 data is produced on a 360-day calendar, to the

year 2098, meaning that the ‘day of the year’ is not consistent with ERA5, and the ERA5 ‘year’ variable

doesn’t capture all of the UKCP18 years. Instead, the GAM is structured such that the response/target
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variable (100m wind speed) is estimated based on 10m wind speed (which has been bias corrected,

see Section 4.2.1) and ‘month of the year’. This modified GAM is found to still provide a high level of

predictability, as shown in Figure 10, in which 97.1% of the variance in the ERA5 100m wind speed

data is explained by the alternative GAM model. These UKCP18 grid cell GAMs are applied to the bias

corrected 10m wind speed data from the 15 UKCP18 global projects over the period 1979-2098. Again,

as shown in Figure 9 (a) and (c), this provides UKCP18 100m wind speed values that are consistent on

average with ERA5 data, and hence can be used to estimate wind generation within this study.

4.2.3 Representing surface solar radiation

The DePreSys hindcast dataset does not contain surface solar radiation information (see Section 4.1.1),

hence this meteorological variable must be estimated to allow for solar generation to be calculated and

used within the adverse weather scenario SGI.

Within this study this is achieved by estimating surface solar radiation from other meteorological vari-

ables (e.g. temperature and wind speed) using a data science model. Specifically, as described in

Section 5.2.4 of Butcher and Dawkins (2020), ‘residual solar radiation’, defined as the difference be-

tween the solar radiation available at the top of the atmosphere (TOA) and that experienced at the

surface, is estimated and then transformed back to raw solar radiation. The TOA solar radiation, can be

calculated for a given day of the year, time of the day, and longitude-latitude location based on simple

astronomical principles related to the Earths rotation and movement around the sun (Meeus, 1998), and

hence the residual solar is the part of the surface solar radiation that directly depends on the meteoro-

logical conditions (i.e. cloud cover).

Similar to the approach taken to model 100m wind speed (Section 4.2.2), a GAM is used to repre-

sent the relationship between residual solar radiation and other meteorological variables. As before,

this GAM is trained on the ERA5 dataset (from which solar radiation information is available), and then

applied to the DePreSys data, providing an estimate of the residual and hence surface solar radiation

at any given time or location, coherently with other the other DePreSys meteorological variables.

The daily average residual solar radiation (surface minus TOA radiation) is therefore calculated for

the ERA5 record and the relationship between this and a number of other variables is captured using

a GAM. This is done for land locations only because solar generation currently occurs on-land only.

As for 100m wind speed, since the aim is to apply the GAM to the DePreSys data to allow for solar

radiation to be estimated for this dataset, the meteorological variables used within the GAM must be

available within the DePreSys hindcasts (see Section 4.1.1). The GAM is therefore structured such that

the response/target variable (residual solar radiation) is estimated based on:

• Surface temperature

c© Crown Copyright 2021, Met Office 25 of 85



• Wind speed (10m above ground)

• Mean sea level pressure

• North Atlantic Oscillation (NAO) - an index calculated as the difference between mean sea level

pressure at Iceland and the Azores islands, known to have a strong influence on the weather in

the UK, particularly in the winter14

• Day of the year

• Longitude

• Latitude

Terms that represent the interaction between these variables are also included in the GAM. In addition,

since residual solar radiation is strictly negative (the surface radiation can never be greater than the

TOA radiation), the residual solar radiation is log-transformed15 to ensure the underlying assumptions

of the GAM model are met.

Figure 11: Map showing the land grid cells within the European domain included in each of the 9 regional solar radiation GAMs.

The relationship between residual solar radiation and these variables is likely to be different in dif-

ferent regions of Europe. For example, because the NAO has a different impact on the weather in the

north and south of Europe (Jerez et al., 2015). For this reason, land locations associated with European
14https://www.metoffice.gov.uk/weather/learn-about/weather/atmosphere/north-atlantic-oscillation (Ac-

cessed 26/05/2021)
15$https://www-users.york.ac.uk/~mb55/yh_stats/trans.htm$, (Accessed 26/05/2021)
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countries of interest (those included in the analysis of Bloomfield et al. 2019) are divided into 9 regions

with one GAM trained on each region. These regions are shown in Figure 11.

Figure 12: For South-East UK (top row) and South-West Europe (bottom row), (a)/(d) scatter plot of ‘true’ daily average log-transformed residual
solar radiation from ERA5, and the associated predicted daily average log-transformed residual solar radiation from the GAM based on surface
temperature, 10m wind speed, mean sea level pressure, NAO, day of year, longitude and latitude, for a 20% sample of cross validation test data,
(b)/(e) scatter plot of ‘true’ and predicted daily average residual solar radiation (not log-transformed), and (c)/(f) scatter plot of ‘true’ and predicted
daily average solar radiation (adding on TOA solar radiation), where days in summer and winter are differentiated between as red/blue respectively.

Figure 12 (a) and (d) show how the GAM predictions (based on the variables listed above) of log-

transformed residual solar radiation align closely with the true log-transformed residual solar radiation

in the South-East UK (SE UK) and South-West Europe (SW EU) regions. These two regions are pre-

sented as a demonstration of the models, and achieve a coefficient of determination (R-squared, or

variance explained by the model) of 92% and 80% respectively. Similar predictability is achieved in

the other 7 regions, as demonstrated in Table 1. Figure 12 (b) and (e) show the relationship between

predicted and true residual solar radiation (i.e. removing the log-transform in a and d) and Figure 12 (c)

and (f) show the resulting relationship between predicted and true surface solar radiation (i.e. adding

on TOA solar radiation). These plots show how the predictions are particularly good for the higher solar

radiation values in the summer, a desirable result as these are the solar conditions that are most rele-

vant for generation and are associated with surplus generation in summer, hence such events will be

represented well by the predictions.

To estimate daily surface solar radiation values consistent with the other meteorological conditions in the

DePreSys dataset, the trained GAMs are applied to the same variables in the 2280 DePreSys hindcast
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Region R-squared

South-East UK 0.92

South-West UK 0.90

North UK 0.93

South-West Europe 0.80

South Europe 0.81

East Europe 0.91

North Scandinavia 0.97

South Scandinavia 0.95

Central Europe 0.89

Table 1: Table summarising the coefficient of determination (R-squared), or variance explained, by each of the regional residual solar radiation
GAMs.

years. Namely, bias corrected daily mean surface temperature, 10m wind speed and mean sea level

pressure (see Section 4.2.1), NAO calculated from bias corrected mean sea level pressure, day of the

year, longitude and latitude. The predictions of log-transformed residual solar radiation from the solar

GAMs are then transformed back to surface solar radiation, as in Figure 12.

The DePreSys solar radiation predictions from the GAMs represent the most likely (mean) solar ra-

diation to occur at the same time as the other meteorological variables. As shown in Figure 13 (a),

this means that the regional seasonal mean solar radiation in ERA5 is captured well by the DePreSys

predictions, but that they do not capture the full variability seen in the ERA5 data. As a results, the most

extreme high and low solar values are not represented, particularly in the summer. To correct for this,

a univariate variance scaling bias correction, as described in Section 4.2.1, is applied to the predicted

DePreSys solar radiation data. As in Section 4.2.1 this is done separately for each grid cell and each

calendar month. Figure 13 (b) shows how this bias correction step helps to improve the variability in the

DePreSys predicted solar radiation.

This approach has provided a representation of surface solar radiation that is coherent with the 2280

years of DePreSys wind speed and temperature hindcast data, with consistent characteristics (mean

and variability) to those in the ERA5 solar radiation data record. This therefore provides data that can

be used to estimate solar generation for the DePreSys model years within this study. This estimated

DePreSys surface solar radiation data is also further validated in Section A.1. Figures 31 - 42 show how

the inter-variable, spatial and temporal variability of this data is very similar to that seen in the ERA5

record.
16https://statistics.laerd.com/statistical-guides/understanding-histograms.php (Accessed 27/05/2021)
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Figure 13: For South-East UK (top row) and South-West Europe (bottom row), (a)/(c) histograms16of ERA5 daily average solar radiation and
predicted (from the solar GAM) DePreSys daily average solar radiation, over the full period of each data set and shown separately for summer and
winter days, and (b)/(d) as in (a)/(c), but for bias corrected predicted DePreSys daily average solar radiation.

4.2.4 Spatio-temporal statistical downscaling

As described in Butcher and Dawkins (2020), many electricity system models ingest 30km spatial, and

hourly temporal, resolution weather information, such as ERA5 reanalysis. The DePreSys hindcasts

provide meteorological information at a 60km, daily resolution. Therefore, in order to align the data as-

sociated with the adverse weather scenarios selected from DePreSys for the final dataset (see Section

5) with the data currently used by energy modellers, a statistical downscaling approach is proposed

to fill in the gaps in the low-resolution data (Butcher and Dawkins, 2020). This method was, however,

found to require additional development, not achievable within the time-scales of this project, hence

unfortunately spatio-temporal statistical downscaling was not ultimately applied within this study.

Similar to the previous sections, a GAM approach was explored. In this case, the aim is to estimate the

high resolution (30km hourly) meteorological information from the low resolution (60km daily average)

version of the same meteorological variable. It is, however, essential that the low resolution, daily and

60km grid cell average values are conserved, to ensure that the same underlying meteorological con-
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ditions are preserved in the downscaled data. For example, estimated hourly temperature values from

the downscaling model must average to give the same daily mean as the value they were downscaled

from. To ensure this, the GAM target/response variable is specified as the difference between the high

and low resolution data. For example, in terms of time and temperature, the target/response variable

is the difference between hourly temperature and the daily average temperature on the corresponding

day. This target variable is then estimated based on the combination of smooth functions of the time of

the day, longitude and latitude.

This GAM approach is applied separately for each European country, each calendar month and for each

meteorological variable: surface temperature, 100m wind speed, and surface solar radiation. Temper-

ature and solar radiation have a strong diurnal (within day) cycle, particularly in the summer months,

peaking in the middle of the day and dropping to their lowest over night. For this reason, the GAMs

for temperature and solar radiation are found to have good skill in predicting hourly (high resolution)

behaviour. Wind speed, on the other hand, does not have such a strong or consistent diurnal cycle,

and hence the method is found to have low skill when downscaling wind speed information in time.

Alternative, more complex approaches must therefore be explored for downscaling wind speed in time,

which could not be achieved in the time-scales of this study.

Further, the approach taken to ensure the low resolution, daily and 60km grid cell average informa-

tion is conserved (i.e. modelling the different between high and low resolution data), is found to create

an issue when modelling meteorological variables that must be greater than zero (i.e. wind speed and

solar radiation). Specifically, a negative prediction of high resolution wind speed/solar radiation (which

is not physically possible) occurs in some cases, when predictions of the difference between high and

low resolution from the GAM are too low and hence remain negative when the low resolution variable is

added back to the prediction.

The approach was successfully applied to the surface temperature data, however, to ensure consis-

tency across the meteorological data included within the final adverse weather scenario dataset, the

low resolution (60km daily average) calibrated DePreSys data is provided for all three variables: surface

temperature, 100m wind speed, and surface solar radiation.

Downscaling of data for energy applications is an active research area, with several groups includ-

ing at the Met Office and University of Reading currently working in this area. It is therefore possible

that any alternative approaches that are developed in the future could be applied to the data contained

within the final adverse weather scenario dataset, providing data at the desired higher resolution.
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4.3 Exploring adverse weather scenarios in ERA5, DePreSys and UKCP18

The methods described in Section 3 for calculating the WDI17 and SGI are applied to the three data

sources: ERA5 reanalysis (Jan 1979 - Dec 2018, 1 realisation), calibrated DePreSys (Nov 1959 - Oct

2016, 40 realisations) and the UKCP18 Hadley centre global projections with calibrated wind speed

(Jan 1979 - Dec 2098, 15 realisations). Adverse weather events are then identified within each of the

data sources, using a the same fixed adverse weather event thresholds across all three, specified as

the 90th percentile of the WDI and SGI in the ERA5 record (i.e the same thresholds as use in Phase

2 a). As shown in Figures 1 and 2, in each data source, the time steps over which the indices exceed

these extreme thresholds are classed as adverse weather and a single event is captured each time the

index exceeds and then drop below the threshold. Each event is then characterised in terms of duration

(the number of days over which the threshold is exceeded), and severity (the accumulated exceedance

of the threshold over the duration of the event).

Event type Number of Number of Number of

ERA5 events DePreSys events UKCP18 events

UK winter wind drought 156 7044 4822

UK summer wind drought 178 9738 7296

UK summer surplus generation 184 6128 7158

Europe winter wind drought 135 6347 4514

Europe summer wind drought 161 9481 9349

Europe summer surplus generation 156 4139 9012

Table 2: Table summarising the number of adverse weather events identified in each data source for each adverse weather event type.

Table 2 summaries the number of adverse weather events identified in each data source, for each

adverse weather event type. As would be expected, the DePreSys and UKCP18 data sources, which

represent 2280 and 1800 model years of data respectively, provide many more adverse weather events

than identified in the ERA5 historical observed record only. This much larger sample size of events

provides much greater precision in the adverse weather scenario return period estimation, presented in

Section 4.4.

For each event type, the adverse weather events identified in each data source can be compared and

explored. Comparing the events in ERA5 and DePreSys provides an additional validation of the cali-

brated DePreSys data, which will be used to represent adverse weather scenarios in the final dataset

(see Section 4.5), and observing changes in UKCP18 events over time gives an initial indication of the

impact of climate change on the adverse weather scenarios. It should be noted that the aim of this study

is not to assess the impact of climate change on electricity systems. The purpose is to identify a sys-
17A glossary of acronyms is presented in Section 8
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tem agnostic approach (or as near as possible) for quantifying adverse weather scenarios, to ultimately

provide a useful dataset for assessing the vulnerability of future system configurations.

In addition, the UKCP18 surface temperature and surface solar radiation data has not been bias cor-

rected at this stage. As discussed in Section 4.2.1, this bias correction is carried out within the statistical

EVA, to allow for the non-stationary in the data to be retained. This means that here, the UKCP18 ad-

verse weather event durations and/or severities may be biased to being too low or high compared to

ERA5 and DePreSys. These UKCP18 events should therefore not be directly compared to the other

two data source in the following plots and instead only the events within the UKCP18 data itself can be

compared with each other. Events within DePreSys and ERA5 can, however, be compared because all

meteorological variables within the DePreSys record have been calibrated and validated (see Sections

4.2 and A.1).

Moreover, when observing the results in the following plots, it is important to remember that the un-

derlying simplistic electricity system set up (as described in Section 3) remains fixed throughout the full

time period (1959-2098). That is, in this study the electricity system does not evolve over time, as it will

do in the real world, and hence the way in which each adverse weather event type changes over time

is based solely on changes in the weather and climate, and not the electricity system. Here, the cur-

rent day temperature-demand relationship in each country (taken from Bloomfield et al. 2019) is used

throughout the period, when in reality this relationship is likely to change over time with, for example,

the increased use of heat pumps. In addition, the installed level of wind and solar renewables is fixed at

a highly renewable level throughout Europe for the full period, rather than being representative of actual

historical capacity and gradually increasing future capacity. This approach is taken because it allows for

the extremity of adverse weather events to be consistently compared across different global warming

levels (see Section 4.4).

Figure 14: Box and whisper plots showing the distribution of UK winter-time wind-drought-peak-demand event durations (top) and severities
(bottom) for events identified in each data source within each year.
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Figure 15: Box and whisper plots showing the distribution of UK summer-time wind-drought-peak-demand event durations (top) and severities
(bottom) for events identified in each data source within each year.

Figure 16: Box and whisper plots showing the distribution of UK summer-time surplus generation event durations (top) and severities (bottom)
for events identified in each data source within each year.

Figure 17: Box and whisper plots showing the distribution of Europe wide winter-time wind-drought-peak-demand event durations (top) and
severities (bottom) for events identified in each data source within each year.
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Figure 18: Box and whisper plots showing the distribution of Europe wide summer-time wind-drought-peak-demand event durations (top) and
severities (bottom) for events identified in each data source within each year.

Figure 19: Box and whisper plots showing the distribution of Europe wide summer-time surplus generation event durations (top) and severities
(bottom) for events identified in each data source within each year.
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Figure 20: Scatter plots of adverse weather event durations and severities. Each panel represents a different event type as described in the panel
heading (where WD=wind-drought-peak-demand and SG=surplus generation), and each point represents a different event, with events from each
data source (ERA5/DePreSys/UKCP18) differentiated between.
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Figures 14 - 20 present comparisons of the adverse weather event durations and severities for events

identified in the three data sources. These figures show how, for all event types, the DePreSys hindcasts

include events that are more extreme than those observed in the historical record (ERA5). Similar to

other studies that have used the DePreSys hindcasts (Thompson et al., 2017), this means that includ-

ing these additional 2280 model years of data within the analysis allows for the exploration of ‘unseen’,

unprecedented meteorological events, as was the aim specified in the scoping phase of this project

(Butcher and Dawkins, 2020).

While more extreme events are captured within the DePreSys hindcasts, the DePreSys event dura-

tions and severities are largely consistent (i.e. not much larger) with those in the ERA5 data, providing

further validation of the underlying calibrated DePreSys meteorological data. In particular, the scatter

plots in Figure 20 show how the ERA5 and DePreSys events have similar relationships between event

duration and severity in each event type. Again, this indicates that the DePreSys events are behaving

in a similar to the ERA5 events, and hence the calibrated DePreSys meteorological data is behaving

sensibly. Further, some of the most extreme UK and European wind-drought-peak-demand events in

the DePreSys record are observed in the years 1963 and 1979, consistent with key years identified by

McCaskill and Hudson (2006) in their book ‘Frozen in Time - The Years when Britain Shivered’.

Focusing on the UKCP18 events only in Figures 14 - 19, allows for an initial exploration of the ef-

fect of climate change on the adverse weather scenarios, remembering that any change over time is

due to changes in the meteorological conditions only (as a fixed electricity system is used over the full

period). As discussed in Dawkins (2019), UKCP18 projections show a clear increasing signal in UK

temperatures (Lowe et al., 2018). Specifically, the UKCP18 results suggest that winter minimum tem-

peratures are on average likely to rise by 1-2◦C throughout the UK by 2100; and summer maximum

temperatures are on average likely to rise by 2-3◦C in the south of the UK by 2100 (dependent on the

climate change Representative Concentration Pathway18). The effect of climate change on wind speeds

and solar irradiance, on the other hand, is less well understood (Lowe et al., 2018), with various studies

showing conflicting results (Dawkins, 2019). There has been some consideration within the UKCP18

analysis (Lowe et al., 2018), of how climate modes of variability, such as the North Atlantic Oscillation

(NAO), will change in future climates. The UKCP18 climate projections indicate a possible decrease in

the number of winter days in the negative phase of the NAO (associated with blocking, low wind speed

and cold condition) and a corresponding increase in positive NAO (windy and mild) days. Lowe et al.

(2018) note, however, that the cause of this is not currently understood.

When considering UKCP18 events in Europe as a whole (Figures 17 - 19), there is an indication

that, due to changes in the climate, European-wide winter-time wind-drought-peak-demand events (as

defined in this study) may decrease in duration and severity, while summer-time wind-drought-peak-
18https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/

ukcp18-guidance---representative-concentration-pathways.pdf (Accessed 09/06/2021)

c© Crown Copyright 2021, Met Office 36 of 85

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---representative-concentration-pathways.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---representative-concentration-pathways.pdf


Figure 21: Scatter plots of European winter-time (left) and summer-time (right) daily weather dependent demand (top), wind generation (middle)
and solar generation (bottom), for each day in the UKCP18 record, for the Hadley Centre PPE memeber 1. These electricity system metrics are
calculated from the daily meteorological conditions using the methods described in Section 3.

demand events may increase in duration and severity. Exploration of the UKCP18 European wind

generation and weather dependent demand (the two components that make up the WDI), shown in Fig-

ure 21, indicates that this change over time is predominantly due to changes in the weather dependent

demand component of the WDI. The wind speed and resulting wind generation is relatively stationary

throughout the period, consistent with insight from UKCP18 documentation (Lowe et al., 2018). Winter

and summer temperatures are, however, increasing in the UKCP18 projections, as global warming in-

creases, causing a reduced demand for heating in the winter and an increased demand for cooling in

the summer. The higher rate of change in the events in summer compared to winter in the later half of
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the 21st century reflect how summer temperatures are expected to increase more than winter tempera-

tures (see Figure 5.2 in the Met office UKCP18 Land Report19).

Interestingly, the same climate change sensitivity is not seen in the European summer-time surplus

generation events (Figure 19), due to the inclusion of solar generation within the SGI. Figure 21 shows

how summer-time solar generation is increasing slightly over the future period, which when combined

with wind generation dominates over the change in demand in the SGI, hence reducing the impact of

changing temperatures on the surplus generation events.

Considering the UKCP18 events in the UK only, Figures 14 - 16 indicate that, based on the fixed

highly-renewable electricity system set up used in this study, there is no clear climate change effect on

the duration or severity of UK adverse weather events. Figure 22 shows how, although there is some

evidence of climate driven change in WDD in the UK, both the WDI and SGI are dominated by wind

generation (which reaches much larger values, due to the high wind generation potential and level of

wind renewables installed in the UK in this study). Since wind speed and hence wind generation does

not change systematically over time with climate change (as seen in Europe), this then leads to consis-

tent adverse weather events in the UK into the future.

Interestingly, it can also been seen in Figure 22 that UK summer-time WDD does not increase over

time, as it does in Europe, in fact a very small negative trend can be seen. Even though the French

CDD slope is used in the UK demand model (see Section 3.1), the daily average temperature in the UK

in summer (April-September), used in the WDD calculation, is still often lower than the heating demand

threshold (15.5◦C) causing a small decrease in heating demand as temperatures increase over the

period. In addition, the cooling demand threshold (22◦C) is exceeded relatively infrequently throughout

the period, and only after about 2050, which is not enough to create a positive demand trend. It may be

expected, however, that the uptake in air conditioning in the UK is more related to overnight high tem-

peratures associated with heatwaves (Nairn and Fawcett, 2015), not captured in the simplistic electricity

system model used in this study. In addition, applying the demand model to potentially biased UKCP18

temperature data may mean that the cooling threshold is not exceeded as frequently as it should be.

The impact of this on the results of the study are, however, expected to be small due to the dominance

of wind generation in the wind drought events.

To determine the sensitivity of the selection of wind drought events to the assumed levels of electri-

fied heating, Figure 23 shows how the magnitude and variability of UKCP18 future winter-time weather

dependent demand and wind-drought-peak-demand event severities change when the UK HDD slope

is varied in the implemented electricity system. This HDD slope represents how many additional GW of

power are required for each degree Celsius colder it is in the winter (see Section 3.1), hence a higher
19https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Land-report.pdf (Ac-

cessed 28/05/2021)
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Figure 22: Scatter plots of UK winter-time (left) and summer-time (right) daily weather dependent demand (top), wind generation (middle) and solar
generation (bottom), for each day in the UKCP18 record, for the Hadley Centre PPE memeber 1. These electricity system metrics are calculated
from the daily meteorological conditions using the methods described in Section 3. It should be noted that in the UK, summer-time daily weather
dependent demand (April-Sept) includes demand for heating, hence why this has also experiences a downward trend over time.

value represents a more sensitive temperature-demand relationship.

The top row of Figure 23 presents the winter-time WDD and wind-drought-peak-demand event severi-

ties when a HDD slope of zero is used. In this case, the temperature has no impact on the WDI (WDD

remains constant), and hence the wind-drought-peak-demand events are based solely on wind gener-

ation. The severity of these events show no clear climate change signal, reflecting UKCP18 findings

related to wind speed (Lowe et al., 2018).
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Figure 23: (Left) Scatter plots of UK winter-time weather dependent demand for each day in the UKCP18 record (for the Hadley Centre PPE
memeber 1), varying the heating degree day slope (temperature-demand sensitivity) in winter, and (right) Scatter plots of the resulting UK winter-
time wind-drought-peak-demand event severities from the UKCP18 record (for all 15 Hadley Centre PPE memeber), again varying the heating
degree day slope. A heating degree day slope of 0 is included to show how the winter-time wind-drought-peak-demand events vary when based
solely on wind generation; 0.75 is the current-day UK heating degree day slope; 2.02 is the French heating degree day slope, characterising an
increased electrification of heating; and 3 and 5 represent increasingly electrified heating systems in the UK.

The other rows in Figure 23 represented HDD slopes of 0.75 (the current-day UK HDD slope), 2.02

(the French HDD slope, characterising an increased electrification of heating), and 3 and 5 represent

increasingly electrified heating systems in the UK, deemed unlikely be the project advisory group.
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Comparing the winter-time WDD (left column of Figure 23) to UK wind generation magnitudes in Figure

22 (middle panel), it can be seen that the UK WDD increases to levels close to that of wind generation

(120GW) when the HDD slope increases to 5 GW per degree Celsius. As a result, in this case, the WDI

is no longer dominated by the wind generation and is equally sensitive to changes in temperature. This

results in a stronger climate change signal in the resulting wind-drought-peak-demand event severities

(right column of Figure 23). The results highlight how, in a highly-renewable UK system (where a high

level of wind renewables are installed), climate sensitivity is still small when the French HDD slope is

employed, and even when this HDD relationship is increased to 3 GW per degree Celsius. This demon-

strates how the energy system studied here appears insensitive to expected changes to future climate.

Specifically, the level of installed renewables in the UK must be lower than that estimated for 2050,

and/or the electrification of heating and cooling must be increased beyond the French models to identify

a strong sensitivity to climate change.

As previously noted, the aim of this study is not to assess the impact of climate change on electricity

systems. The purpose is to identify a system agnostic approach (or as near as possible) for quantify-

ing adverse weather scenarios, to ultimately provide a useful dataset for assessing the vulnerability of

future system configurations.

As such, the electricity system configuration used in this study (described in Section 3) is implemented

to ensure a highly-renewable system is represented (high levels of wind and solar renewables installed),

and to remain as electricity system agnostic as possible (not making assumptions about how demand

may change or where renewables may be located in the future), following guidance from the project

advisory group of energy experts. Hence, although the climate change sensitivity captured within the

final dataset of adverse weather scenarios may be somewhat conditional on this chosen electricity sys-

tem configuration (as shown in Figure 23), ultimately the dataset is relevant for a range of potential

future electricity system. This dataset can now be widely used to explore how such relevant adverse

weather scenarios will impact other electricity system configurations (e.g. those with highly electrified

heating/cooling).

4.4 Statistical extreme value analysis to quantify adverse weather in different

climates

The aim of this study is to produce a dataset of adverse weather scenarios, characteristic of various

extreme levels (i.e. return periods), and climate change warming levels. Specifically, the 1 in 2, 5, 10,

20, 50 and 100 year return period events for warming levels representative of current day (1.2◦C), and

1.5◦C, 2◦C, 3◦C, and 4◦C above pre-industrial, are to be shared (Butcher and Dawkins, 2020).

To achieve this, a non-stationary statistical EVA20 is implemented (Coles, 2001), based on the dura-
20A glossary of acronyms is presented in Section 8
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tions and severities of adverse weather scenarios identified in the three data sources (as presented

in Section 4.3). This analysis provides a return level curve for each event type (wind-drought, surplus

generation), event metric (duration, severity) and global warming level of interest (1.2, 1.5, 2, 3, 4◦C

above pre-industrial). This analysis can then be used to identify the extremity of an adverse weather

scenario expected to occur on average once every N years (i.e. a 1 in N year event) for that given event

type, event metric and global warming level.

As described in Section 5.3 and Figure 64 of Dawkins (2019), a statistical extreme value distribution,

such as the Generalised Pareto Distribution (GPD)21, can be fitted to the extremes of a variable (e.g.

temperature above a high threshold), and used to parametrically estimate the probability of observing

a value of a given magnitude (e.g. the probability of observing a temperature of 30◦C). That is, the

parameters that explain the shape of the fitted GPD (the scale and shape parameters21) can be used

within the GPD probability density function21 to calculate this event probability.

This probability can then be equated to a return period (or recurrence interval), representative of the

number of years on average you would have to wait to see an event of the same magnitude. For exam-

ple if the fitted GPD specifies a 0.01 (or 1%) probability of observing a temperature of 30◦C in a year,

then this event has been modelled as occurring on average once every 100 years, equivalent to having

a return period of 100 years. Note that these values are purely for demonstration and are not based on

real data.

Further, it may be expected that this probability will change over time, for example due to climate

change. This means that the modelled variable (e.g. temperature) is expected to be non-stationary,

and hence a non-stationary (changing over time) GPD should be fitted instead. In this case, the pa-

rameters of the GPD, and in some cases the GPD high threshold (Brown et al., 2014), are able to vary

in time by conditioning on a relevant explanatory variable such as global mean surface temperature

(GMST), known to be a good representation of the magnitude of climate change (Brown et al., 2014). In

the non-stationary case, the parameters of the GPD depend on the relevant explanatory variable (e.g.

GMST) and hence the GPD takes on a different shape for any given value of this variable. For example,

this could mean that the fitted GPD specifies a 0.01 (or 1%) probability of observing a temperature of

30◦C in any given year for the current day global warming level (1.2◦C above pre-industrial), but a 0.05

(or 5%) probability of observing a temperature of 30◦C in any given year for a warming level of 2◦C

above pre-industrial. This means that this is a 1 in 100 year event in the current day climate, but a 1

in 20 year event (occurring on average 5 times in 100 years) in the warmer climate. As above, these

values are purely for demonstration and are not based on real data.

As discussed in Section 5.2.5 of Butcher and Dawkins (2020), this non-stationary EVA approach has
21http://www.nematrian.com/GeneralisedParetoDistribution (Accessed 28/05/2021)
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previously been used by Brown et al. (2014) to produce time-dependent projections of future extreme

rainfall and temperature in the UK. Similar to the above example, Brown et al. (2014) condition their

EVA model parameters on GMST, allowing for extremes to be estimated for any given warming level

of interest. In addition, the model is fitted to both climate projections, so future warming levels can be

considered, as well as historical observations within an overlapping time period, to allow for the climate

projections to be bias corrected. This bias correction is achieved by conditioning the EVA model param-

eters on a bias term (as well as global mean temperature) that is only applied to data from the climate

projections. This term can then be ‘turned off’ to allow for non-biased estimates of future extremes (see

Brown et al. (2014) for more detail).

In this study, a similar approach is used to quantify the extremes of the adverse weather event du-

rations and severities. This allows for the return period of the event durations/severities to be quantified,

and subsequently used to pick relevant events for the final dataset. For example, allowing for insights

such as: a UK winter-time wind-drought-peak-demand-event expected to occur on average once every

20 years (1 in 20 year event) in the current day climate (warming level 1.2◦C above pre-industrial) has

a duration of 13-14 days.

Similar to Brown et al. (2014), here, a non-stationary EVA model is fit to event durations/severities

taken from both climate projections and historical data, and the parameters of the EVA model (here a

GPD) are conditioned on GMST and a climate model bias term. Brown et al. (2014) fit their EVA model

to each climate model projection individually to allow for the climate model structural and parametric

uncertainty to be fully captured. Here, however, since adverse weather events rather than raw mete-

orological data are being modelled, the relatively small sample size of events in an individual climate

projection result in the fitted EVA model being very sensitive to outliers (extreme high or low values) in

the UKCP18 data. Hence here the UKCP18 adverse weather events, for the whole PPE ensemble, are

pooled together into one EVA model for each event type and metric. In addition, in this study, only the

Hadley Centre PPE-15 are used, due to the lack of availability of solar radiation in the CMIP5 models

(as described in Section 4.1.2). This means climate model structural uncertainty is not captured here.

The Hadley Centre models are known to become warmer more rapidly than the CMIP5 models over the

future period (Figure 5.2 of Murphy, J. M. et al. 2018). This is, however, not an issue within this analysis

because the extremity of events is captured in terms of warming level, not time.

As well as including historical observed events (from ERA5), here, the DePreSys historical hindcast

events are also included within each EVA model. These DePreSys events, taken from more then 2000

years of meteorological data, are treated as additional historical observations, thought to be acceptable

based on the numerous validations presented in this report. This therefore greatly reduces the uncer-

tainty in the high return period estimates. That is, since the DePreSys events represent well over 100

years of meteorological information, estimating the 1 in 100 year return period event can be done with
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much greater certainty than if only events from the 40 ERA5 years of data were used.

When implementing a GPD EVA analysis, a suitable high threshold of the modelled variable (e.g. event

duration) must be selected, above which the GPD is fitted. This is done to satisfy the statistical as-

sumptions of the GPD (Coles, 2001), and to ensure the GPD fits well to the extreme values in the data.

Here, it is essential that the EVA model is able to represent the (relatively low) 1 in 2 year event level,

to allow for this event to be captured within the final dataset, as specified in the scoping phase of the

project (Butcher and Dawkins, 2020). For each adverse weather event type and metric combination

to be modelled (i.e. UK winter wind drought durations, UK winter wind drought severities, UK summer

wind drought durations, etc.), the percentile of the modelled variable equivalent to the 1 in 2 year event

is calculated and used as the threshold above which to fit the GPD. If one adverse weather event occurs

each year, this 1 in 2 year event level would be the 50th percentile (equivalent to the median) of the

modelled variable. However, multiple events occur in each year, hence the percentile of the modelled

variable equivalent to the 1 in 2 year event is scaled by the number of events per year. The resulting

percentile thresholds used in each GPD model are shown in Table 3. In all cases, these thresholds

were found to be high enough to accurately model the observed 1 in 100 year extreme level (the highest

level to be selected for the final data set).

Figure 24: A histogram of the number of UK summer-time wind-drought-peak-demand events per year over all years in the data used within this
study: ERA5 (Jan 1979 - Dec 2018, 1 realisation), DePreSys (Nov 1959 - Oct 2016, 40 realisations) and the UKCP18 Hadley Centre (Jan 1979 -
Dec 2098, 15 realisations), shown separately for each data source.

The number of events per year is calculated by taking the median number of events per year in the
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historical ERA5 and DePreSys datasets. Figure 24 shows the number of summer-time wind-drought-

peak-demand events per year in the three data sources. In this case the median number of events per

year in the ERA5 and DePreSys datasets is 4 and the resulting threshold of the durations/severities is

their 87.5th percentile. The number of events per year used in each GPD model is shown in Table 3.

Finally, a model selection process was carried out to explore the most appropriate EVA model struc-

ture. Non-stationary GPD models were fit to each adverse weather event type and metric combination

(i.e. UK winter wind drought durations, UK winter wind drought severities, UK summer wind drought

durations, etc.), to explore four model structures:

(1) Different climate model bias terms for each of the UKCP18 PPE-15 members, and the effect of

GMST modelled in both the GPD scale parameter and GPD shape parameter;

(2) Different climate model bias terms for each of the UKCP18 PPE-15 members, and the effect of

GMST modelled in the GPD scale parameter only;

(3) A single bias terms for all UKCP18 PPE-15 members, and the effect of GMST modelled in both

the GPD scale parameter and GPD shape parameter;

(4) A single bias terms for all UKCP18 PPE-15 members, and the effect of GMST modelled in the

GPD scale parameter only.

In each case, the model Akaike information criterion (AIC)22, a mathematical method for evaluating

model fit, was calculated and compared. Across all of the EVA models, model structure (4) was found

to most often given the best fit, and was consistently either the best or second best model, in terms of

the AIC.

The EVA model structure (4) is fitted to each adverse weather event type and metric combination.

This is done using a Bayesian statistical modelling framework, using the extRemes package23 in the R

statistical computing environment, resulting in an estimated ‘posterior’ distribution24 of values for each

model parameter. These model fits are summarised in Table 3. Column 5 of this table (the posterior

mean of the GPD scale bias term) shows how the models correctly identify the larger climate model bias

seen in UKCP18 surplus generation events in Europe, in Figure 19. In addition, column 6 (the posterior

mean of the GPD scale GMST change term) presents the correct direction of change with GMST in

each case: winter wind droughts and summer surplus becoming less extreme (negative values), and

summer wind droughts becoming more extreme (positive values), due to rising temperatures and hence

reduced demand in winter and increased demand in summer. Further, as seen in Figures 14 - 19,

this change is greatest in European-wide summer wind droughts (largest values in column 6), as also

discussed in Section 4.3.
22https://www.scribbr.com/statistics/akaike-information-criterion/ (Accessed 29/05/2021)
23https://cran.r-project.org/web/packages/extRemes/extRemes.pdf (Accessed 11/06/2021)
24https://towardsdatascience.com/probability-concepts-explained-bayesian-inference-for-parameter-estimation-90e8930e5348

(Accessed 29/05/2021)
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Event type and metric Events per year GPD threshold GPD scale GPD scale GPD scale GPD shape

(percentile) intercept term bias term GMST change term

UK winter

wind drought, Duration 3 83.3 1.260 0.054 -0.009 -0.072

UK winter

wind drought, Severity 3 83.3 0.729 0.178 -0.045 0.082

UK summer

wind drought, Duration 4 87.5 1.399 -0.098 0.034 -0.100

UK summer

wind drought, Severity 4 87.5 0.268 -0.069 0.042 0.039

UK summer surplus

generation: Duration 3 83.3 1.141 0.35 -0.032 -0.056

UK summer surplus

generation: Severity 3 83.3 0.544 0.472 -0.024 0.058

Europe winter

wind drought, Duration 3 83.3 1.546 -0.041 -0.048 -0.042

Europe winter

wind drought, Severity 3 83.3 0.9 0.101 -0.099 0.148

Europe summer

wind drought, Duration 4 87.5 1.441 -0.029 0.241 -0.056

Europe summer

wind drought, Severity 4 87.5 0.164 0.163 0.322 0.131

Europe summer surplus

generation: Duration 2 75.0 1.013 0.591 -0.019 -0.07

Europe summer surplus

generation: Severity 2 75.0 0.504 0.841 -0.026 0.064

Table 3: Table summarising the non-stationary GPD fits to each adverse weather event type and metric combination. The number of events per year
(column 2) is calculated as the median number of events per year in the historical ERA5 and DePreSys datasets combined. The GPD threshold
(column 3) is the percentile of the modelled variable (duration/severity) above which the GPD is fitted, calculated as the percentile equivalent to a 1
in 2 year event. The GPD has two parameters: scale and shape. The scale parameter is modelled as varying over time (non-stationary) conditioned
on GMST and a climate model bias term, hence the scale parameter is a combination of an intercept term (column 4), the climate model bias term
(column 5) and the GMST change effect (column 6). The shape parameter is modelled as being stationary and unbiased in the climate model
(column 7). For each model parameter, the Bayesian posterior distribution mean is given (i.e. the best estimate of this value from the model).

Figures 25 and 26 and Tables 4 - 15 present the final results of the statistical EVA. These plots shown

in Figures 25 and 26 reflect the findings in Section 4.3. They further show how, based on the electricity

system characterisation used in this study, the greatest difference between warming levels is found in

the European wind-drought-peak-demand events, particularly in summer; and that only a small differ-

ence is found across the warming levels in the UK events. Tables 4 - 15 summarise the key return levels

of interest within this study, and therefore highlight the extremity of events that should be used to repre-

sent each return period and warming level in the final ‘Adverse Weather Scenarios for Future Electricity

Systems’ dataset. For example, it is shown in Table 4 that the 1 in 20 year return level UK winter-time

wind-drought-peak-demand event, in terms of duration and in the current day climate (warming level

1.2◦C above pre-industrial) is 13-14 days long. This means that UK winter-time wind-drought-peak-

demand events in this range should be selected to represent this event type, return period and warming

level in the final dataset.

Moreover, the results of this EVA can be used to more accurately quantify the extremity of the ERA5
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WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 6 (6,6) 9 (9,9) 11 (11,12) 13 (13,14) 16 (16,17) 18 (17,19)

1.50 6 (6,6) 9 (9,9) 11 (11,12) 13 (13,14) 16 (15,17) 18 (17,19)

2.00 6 (6,6) 9 (9,9) 11 (11,12) 13 (13,14) 16 (15,17) 18 (17,19)

3.00 6 (6,6) 9 (9,10) 11 (11,12) 13 (13,14) 16 (15,17) 18 (17,19)

4.00 6 (6,6) 9 (9,10) 11 (11,12) 13 (12,15) 16 (15,17) 18 (16,20)

Table 4: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of UK winter-time wind-drought-peak-demand event duration
for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval around
this shown in brackets. These values summarise the curve shown in the top left panel of Figure 25.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 2.8 (2.7,2.8) 4.7 (4.5,4.9) 6.3 (6,6.5) 7.9 (7.5,8.3) 10.2 (9.6,10.9) 12.1 (11.3,13)

1.50 2.8 (2.7,2.8) 4.7 (4.5,4.8) 6.2 (5.9,6.5) 7.8 (7.4,8.3) 10.1 (9.5,10.8) 12 (11.1,12.9)

2.00 2.8 (2.7,2.8) 4.6 (4.4,4.8) 6.1 (5.8,6.5) 7.7 (7.3,8.2) 10 (9.3,10.7) 11.8 (10.9,12.7)

3.00 2.7 (2.7,2.8) 4.5 (4.3,4.8) 6 (5.6,6.4) 7.5 (6.9,8.1) 9.6 (8.8,10.5) 11.4 (10.3,12.5)

4.00 2.7 (2.7,2.8) 4.4 (4.2,4.7) 5.8 (5.3,6.3) 7.3 (6.6,8) 9.3 (8.4,10.4) 11 (9.7,12.4)

Table 5: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of UK winter-time wind-drought-peak-demand event severity
for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval around
this shown in brackets. These values summarise the curve shown in the top right panel of Figure 25.

adverse weather scenarios identified and presented in the Phase 2 (a) report (Dawkins and Rushby,

2021), better putting these events into context. For example, the most extreme UK winter-time wind-

drought-peak-demand event in the ERA5 record, which began on 29th November 1989 and lasted 17

days (See Table 2 in Dawkins and Rushby 2021), has a return period of 69 years in terms of duration,

according to the best estimate from the associated EVA models (top panel of Figure 25). This event is

also identified as impacting all of Europe beginning on 1st December 1989 and lasting 12 days (See

Table 7 in Dawkins and Rushby 2021). Using the EVA models developed in this phase of the project it

can be calculated that, in Europe, this event has a return period of 6 years in terms of duration. These

EVA models, summarised in the curves presented in Figures 25 and 26, can be used in a similar way

to estimate the return period of any of the ERA5 events presented in the Phase 2 (a) report (Dawkins

and Rushby, 2021), in terms of both duration and severity.

It should be noted here that this study quantifies the likelihood of adverse weather events in terms

of their duration and severity separately. An extension of this work could look to capture future severity-

duration return level curves, i.e. the interaction between these characteristics, using a statistical model

similar to the heatwave simulator of Brown (2020).
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WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 7 (7,7) 10 (10,11) 13 (13,13) 15 (15,16) 18 (18,19) 20 (19,21)

1.50 7 (7,7) 10 (10,11) 13 (13,13) 15 (15,16) 18 (18,19) 20 (20,21)

2.00 7 (7,7) 10 (10,11) 13 (13,14) 16 (15,16) 19 (18,19) 21 (20,22)

3.00 7 (7,7) 11 (10,11) 13 (13,14) 16 (15,17) 19 (18,20) 21 (20,23)

4.00 7 (7,7) 11 (10,11) 14 (13,14) 16 (15,17) 19 (18,21) 22 (20,24)

Table 6: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of UK summer-time wind-drought-peak-demand event
duration for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval
around this shown in brackets. These values summarise the curve shown in the middle left panel of Figure 25.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 2.1 (2.1,2.1) 3.3 (3.2,3.4) 4.3 (4.2,4.5) 5.3 (5.1,5.6) 6.7 (6.4,7.1) 7.8 (7.4,8.3)

1.50 2.1 (2.1,2.1) 3.3 (3.2,3.5) 4.3 (4.2,4.5) 5.4 (5.1,5.6) 6.8 (6.4,7.2) 7.9 (7.4,8.4)

2.00 2.1 (2.1,2.1) 3.4 (3.3,3.5) 4.4 (4.2,4.6) 5.4 (5.2,5.7) 6.9 (6.5,7.3) 8 (7.4,8.6)

3.00 2.1 (2.1,2.1) 3.4 (3.3,3.6) 4.5 (4.2,4.8) 5.6 (5.2,6) 7.1 (6.5,7.7) 8.2 (7.6,9)

4.00 2.1 (2.1,2.1) 3.5 (3.3,3.7) 4.6 (4.3,5) 5.8 (5.3,6.3) 7.3 (6.6,8.1) 8.5 (7.6,9.5)

Table 7: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of UK summer-time wind-drought-peak-demand event
severity for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval
around this shown in brackets. These values summarise the curve shown in the middle right panel of Figure 25.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 6 (6,6) 9 (8,9) 11 (10,11) 13 (12,13) 15 (14,16) 17 (16,18)

1.50 6 (6,6) 9 (8,9) 11 (10,11) 13 (12,13) 15 (14,16) 17 (16,18)

2.00 6 (6,6) 9 (8,9) 11 (10,11) 12 (12,13) 15 (14,16) 16 (16,17)

3.00 6 (6,6) 9 (8,9) 10 (10,11) 12 (12,13) 15 (14,15) 16 (15,17)

4.00 6 (6,6) 8 (8,9) 10 (10,11) 12 (11,13) 14 (13,15) 16 (15,17)

Table 8: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of UK summer-time surplus-generation event duration for
each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval around this
shown in brackets. These values summarise the curve shown in the bottom left panel of Figure 25.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 2.6 (2.6,2.7) 4.2 (4.1,4.4) 5.5 (5.3,5.8) 6.9 (6.5,7.2) 8.7 (8.2,9.3) 10.2 (9.5,10.9)

1.50 2.6 (2.6,2.7) 4.2 (4.1,4.4) 5.5 (5.3,5.8) 6.8 (6.5,7.2) 8.7 (8.1,9.2) 10.1 (9.4,10.9)

2.00 2.6 (2.6,2.6) 4.2 (4,4.4) 5.5 (5.2,5.8) 6.8 (6.4,7.2) 8.6 (8,9.2) 10 (9.3,10.9)

3.00 2.6 (2.6,2.6) 4.2 (4,4.4) 5.4 (5.1,5.8) 6.7 (6.2,7.2) 8.4 (7.8,9.2) 9.9 (9,10.8)

4.00 2.6 (2.5,2.6) 4.1 (3.9,4.4) 5.3 (4.9,5.8) 6.6 (6,7.2) 8.3 (7.5,9.2) 9.7 (8.7,10.9)

Table 9: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of UK summer-time surplus-generation event severity for
each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval around this
shown in brackets. These values summarise the curve shown in the bottom right panel of Figure 25.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 7 (7,7) 11 (11,11) 14 (13,15) 17 (16,18) 21 (20,22) 23 (22,25)

1.50 7 (7,7) 11 (11,11) 14 (13,14) 17 (16,18) 20 (19,22) 23 (22,25)

2.00 7 (7,7) 11 (10,11) 14 (13,14) 17 (16,18) 20 (19,22) 23 (21,24)

3.00 7 (7,7) 11 (10,11) 13 (13,14) 16 (15,17) 19 (18,21) 22 (20,24)

4.00 7 (7,7) 11 (10,11) 13 (12,14) 16 (14,17) 19 (17,21) 21 (19,24)

Table 10: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of European winter-time wind-drought-peak-demand event
duration for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval
around this shown in brackets. These values summarise the curve shown in the top left panel of Figure 26.
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Figure 25: UK event return level plots, showing the level of the modelled variable, Duration/Severity, (on the y axis) associated with a given return
period in years (on the x axis), plotted on a logarithmic scale, for three key warming level of interest (shown in different colours). The solid lines
represent the return level curves based on the Bayesian posterior mean (i.e. the best estimate), and the shaded areas represent the 95% credible
intervals around these best estimates. This means that the true return level has a 95% probability of being within the shaded area. Return level
plots are presented for each adverse weather event type and metric combination in the UK, as described in the title of each panel, where WD=Wind
Drought and SG=Surplus Generation.
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Figure 26: European event return level plots, showing the level of the modelled variable, Duration/Severity, (on the y axis) associated with a given
return period in years (on the x axis), plotted on a logarithmic scale, , for three key warming level of interest (shown in different colours). The solid
lines represent the return level curves based on the Bayesian posterior mean (i.e. the best estimate), and the shaded areas represent the 95%
credible intervals around these best estimates. This means that the true return level has a 95% probability of being within the shaded area. Return
level plots are presented for each adverse weather event type and metric combination in Europe, as described in the title of each panel, where
WD=Wind Drought and SG=Surplus Generation.
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WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 3 (2.9,3) 5.2 (5,5.4) 7.2 (6.8,7.5) 9.3 (8.8,9.8) 12.5 (11.6,13.5) 15.2 (13.9,16.7)

1.50 3 (2.9,3) 5.2 (5,5.4) 7 (6.7,7.4) 9.1 (8.6,9.7) 12.2 (11.3,13.2) 14.9 (13.5,16.4)

2.00 2.9 (2.9,3) 5 (4.8,5.3) 6.8 (6.4,7.3) 8.8 (8.2,9.5) 11.8 (10.7,13) 14.3 (12.8,16)

3.00 2.9 (2.9,3) 4.8 (4.6,5.2) 6.5 (6,7.1) 8.3 (7.5,9.2) 10.9 (9.7,12.5) 13.2 (11.5,15.3)

4.00 2.9 (2.9,2.9) 4.7 (4.3,5.1) 6.1 (5.5,6.9) 7.8 (6.8,9) 10.2 (8.8,12.1) 12.3 (10.4,14.7)

Table 11: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of European winter-time wind-drought-peak-demand event
severity for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval
around this shown in brackets. These values summarise the curve shown in the top right panel of Figure 26.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 10 (10,10) 14 (14,15) 17 (17,18) 20 (20,21) 24 (23,25) 27 (26,28)

1.50 10 (10,10) 15 (14,15) 18 (17,19) 21 (21,22) 25 (24,27) 28 (27,30)

2.00 10 (10,10) 16 (15,16) 19 (19,20) 23 (22,24) 28 (26,29) 31 (30,33)

3.00 11 (11,11) 18 (17,18) 22 (21,24) 27 (26,29) 33 (31,35) 37 (35,40)

4.00 12 (11,12) 20 (19,22) 26 (25,28) 32 (30,35) 40 (37,44) 45 (42,50)

Table 12: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of European summer-time wind-drought-peak-demand
event duration for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible
interval around this shown in brackets. These values summarise the curve shown in the middle left panel of Figure 26.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 2.8 (2.7,2.8) 4.3 (4.2,4.5) 5.6 (5.4,5.9) 7 (6.7,7.4) 9.1 (8.6,9.8) 10.9 (10.1,11.9)

1.50 2.9 (2.8,2.9) 4.6 (4.4,4.7) 6 (5.7,6.3) 7.6 (7.2,8) 9.9 (9.2,10.6) 11.8 (10.9,12.9)

2.00 3 (3,3.1) 5 (4.8,5.2) 6.7 (6.4,7) 8.5 (8.1,9.1) 11.2 (10.5,12.1) 13.5 (12.4,14.8)

3.00 3.5 (3.3,3.6) 6.2 (5.9,6.6) 8.5 (8,9.1) 11.1 (10.3,11.9) 14.8 (13.6,16.1) 17.9 (16.3,19.7)

4.00 4 (3.8,4.3) 7.8 (7.3,8.4) 11 (10.2,12) 14.5 (13.4,15.9) 19.7 (17.9,21.7) 24 (21.6,26.7)

Table 13: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of European summer-time wind-drought-peak-demand
event severity for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible
interval around this shown in brackets. These values summarise the curve shown in the middle right panel of Figure 26.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 6 (6,6) 8 (8,9) 10 (10,10) 12 (11,12) 14 (13,14) 15 (15,16)

1.50 6 (6,6) 8 (8,9) 10 (10,10) 12 (11,12) 14 (13,14) 15 (14,16)

2.00 6 (6,6) 8 (8,9) 10 (10,10) 12 (11,12) 14 (13,14) 15 (14,16)

3.00 6 (6,6) 8 (8,9) 10 (10,10) 12 (11,12) 13 (13,14) 15 (14,16)

4.00 6 (6,6) 8 (8,9) 10 (10,10) 11 (11,12) 13 (13,14) 15 (14,16)

Table 14: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of European summer-time surplus-generation event
duration for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval
around this shown in brackets. These values summarise the curve shown in the bottom left panel of Figure 26.

WL (◦C) RL:2 years RL:5 years RL:10 years RL:20 years RL:50 years RL:100 years

1.20 2.3 (2.3,2.4) 3.9 (3.8,4.1) 5.2 (5,5.5) 6.5 (6.2,6.9) 8.3 (7.9,8.9) 9.8 (9.2,10.6)

1.50 2.3 (2.3,2.4) 3.9 (3.7,4.1) 5.2 (4.9,5.4) 6.5 (6.1,6.9) 8.3 (7.8,8.9) 9.7 (9.1,10.5)

2.00 2.3 (2.3,2.4) 3.9 (3.7,4.1) 5.1 (4.9,5.4) 6.4 (6.1,6.8) 8.2 (7.7,8.8) 9.6 (9,10.4)

3.00 2.3 (2.2,2.4) 3.8 (3.6,4) 5 (4.8,5.3) 6.3 (5.9,6.7) 8 (7.5,8.7) 9.4 (8.7,10.2)

4.00 2.3 (2.2,2.4) 3.8 (3.6,4) 4.9 (4.6,5.3) 6.2 (5.7,6.6) 7.9 (7.3,8.6) 9.2 (8.5,10.1)

Table 15: Table summarising the 1 in 2, 5, 10, 20, 50, and 100 year return level (RL) of European summer-time surplus-generation event
severity for each warming level (WL) of interest. In each case, the Bayesian posterior mean (best estimate) is given, with the 95% credible interval
around this shown in brackets. These values summarise the curve shown in the bottom right panel of Figure 26.
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4.5 Selecting adverse weather scenarios for the final dataset

This section describes the approach used to select relevant adverse weather scenarios for the final

dataset. These scenarios are selected predominantly from the calibrated DePreSys25 hindcast data.

This data source is used rather than ERA5 or UKCP18 because the ERA5 reanalysis data is already

available to download and use26, so provision of data from this data set would provide less additional

information compared to existing datasets and previous reports, and the underlying UKCP18 meteoro-

logical data has not been fully bias corrected (see Section 4.2.1).

Adverse weather scenarios are selected to represent:

1. Each adverse weather event type: winter-time wind-drought-peak-demand events, summer-time

wind-drought-peak-demand events, and summer-time surplus-generation events;

2. In each region: the UK, and Europe as a whole;

3. For a number of extreme levels: 1 in 2, 5, 10, 20, 50 and 100 year return levels;

4. In terms of the two adverse weather event metrics: duration and severity;

5. For as many warming levels as are different/distinct for a given event type, region, return level

and metric, from: current day (1.2◦C), 1.5◦C, 2◦C, 3◦C and 4◦C above pre-industrial global mean

temperature.

In each case, the DePreSys adverse weather scenarios are selected based on the EVA results shown

in Tables 4 - 15. Specifically, this is based on the uncertainty range associated with that given combi-

nation of event characteristics (event type, region, return level, metric and warming level). For example,

adverse weather scenarios selected for the final dataset to represent UK winter-time wind-drought-

peak-demand events with a return period of 100 years in terms of duration in the current day climate,

are selected from those identified as having durations in the range 17-19 days (see Table 4).

In addition, Tables 4 - 15 are used to identify how many distinct warming levels should be represented

within the final dataset for each combination of event type, region, event metric and return level. This

is done by observing, within each column of each table, which of the best estimates of the return levels

shown in each row for each warming level (i.e. the number outside of the brackets), lie within the uncer-

tainty range of the previous warming levels.

For example, in the case of UK winter-time wind-drought-peak-demand event durations (Table 4), for

every return level (each column), the best estimate of the associated durations in each warming level

(each row) is within the uncertainty range of the lowest warming level (1.2◦C). This means that for

this even type, region, and event metric, the events selected for the final dataset to represent each
25A glossary of acronyms is presented in Section 8
26https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (Accessed 02/06/2021)
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return level are representative of all warming levels (1.2-4◦C). That is, there is no climate change ef-

fect observed in these events within this study, subject to the assumptions of the methodology. This

is consistent with the exploration of these events within this study in Section 4.3 (Figure 14) and the

associated EVA model presented in Section 4.4 (Figure 25 top left panel).

Conversely, in the case of European summer-time wind-drought-peak-demand event durations (Table

12), focusing on the 20 year return level (the fourth column), it can be seen that while the best estimate

of the return level for the 1.5◦C warming level is within the uncertainty range of the 1.2◦C warming level,

21 is within (20,21), the best estimate of all of the other warming levels is outside of the uncertainty

range of the previous warming level. That is, 23 is not within (21,22), 27 is not within (22,24) and 32

is not within (26,29). Hence, for this even type, region, and event metric events selected for the final

dataset are chosen to represent warming levels 1.2-1.5◦C, 2◦C, 3◦C and 4◦C.

Figure 27: A graphical representation of the events selected from the DePreSys record to represent (a) UK winter-time wind-drought-peak-demand
scenarios with a 1 in 100 year duration in warming levels 1.2-4◦C (see Table 4), (b) European summer-time wind-drought-peak-demand scenarios
with a 1 in 20 year duration in warming level 1.2-1.5◦C (see Table 12), (c) as in b, but for warming level 2◦C, (d) as in b, but for warming level 3◦C,
(e) as in b, but for warming level 4◦C. Each point represents the duration/severity of DePreSys events within the relevant range of the event metric
(in these cases duration). All events within this range are shown in grey, and those selected for the final dataset in each case are shown in
blue.

For each distinct warming level, up to 3 events are selected from the DePreSys record. Where more

than 3 DePreSys events have durations/severities within the specified event metric range, 3 events

are selected that sample the range of both the duration and severity of representative events. This is

demonstrated in Figure 27, for the event combination examples introduced above. Specifically, the first

of the 3 events is selected (blue points) at random from those in the lower half of points in terms of both

duration and severity, the second is selected at random from those in the upper half of points in terms

of both duration and severity, and the third event is selected at random from those remaining. As can

be seen in Figure 27, this gives a good spread of events in terms of their extremity within the range

specified in the statistical EVA.

In some cases, such as can be seen in Figure 27 (e), only 2 DePreSys events have durations/severities

within the specified event metric range. In this case only 2 events are included for that event combina-

tion within the final dataset. Further, for European summer-time wind-drought-peak-demand scenarios

with return periods greater then 20 years and higher warming levels, there are occasions when no

DePreSys events are as extreme as the specified return level range. Specifically, the most extreme
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DePreSys event in terms of duration is 33 days long, hence no events exist within the 1 in 50 year

4◦C warming level range, (37,44), or the 1 in 100 year 4◦C and 3◦C warming level ranges, (35,40) and

(42,50) respectively (see Table 12), and similarly for severity (see Table 13). In these cases, a single

event is selected from the UKCP18 record instead.

As well as including events representative of the six return periods of interest, the maximum three

events in each combination of event type, region and event metric are also included within the final

dataset. These events are include to allow for the value of the DePreys data to be fully realised through

representing unprecedented ‘unseen’ conditions, more extreme than those seen in the observed ERA5

record. No return level has been assigned to these events, but due to the length of the DePreSys record

(2280 years), the most extreme event in each case has a return period of approximately 2000 years (in

the historical climate).

Figure 28: A comparison of the wind drought index (WDI) during a subset of the UK winter-time wind-drought-peak-demand events selected from
the DePreSys record to represent different extreme levels in terms of duration for the final dataset. Each event is plotted as a function of the days of
the year over which it occurred (x axis). The extremity of each event is represented by the colour of the WDI curve (as described in the legend), and
the thick blue horizontal line represents the UK winter-time wind-drought-peak-demand event threshold, used to identify adverse weather events (as
described in Section 3.4).

Figure 28 shows the WDI during a subset of the UK winter-time wind-drought-peak-demand events

selected to represent different extreme levels in terms of duration for the final dataset. This figure

provides a demonstration of how the events of the same extremity (return period) and of different ex-

tremities (including the maximum events) compare to one another and differ. This shows how including

events across multiple extreme levels, that also sample the range of both event metrics (duration and

severity), gives a diverse range of events, as is relevant for thorough electricity system resilience testing.

Based on this selection method, a total of 412 adverse weather scenarios are selected and included

within the final dataset of ‘Adverse Weather Scenarios for Future Electricity Systems’. Of these, 403

are taken from the DePreSys record and 9 from UKCP18. Tables 16 - 22 in the Appendix (Section A.2)

summarise these all of these 412 events in terms of the data source (DePreSys or UKCP18); event

duration; event severity; the event start date; a label explaining the event type, region, metric and return

level it represents; and the number of the event (up to 3 selected to represent each event combination).
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For each selected event, the associated gridded surface temperature, 100m wind speed and surface

solar radiation data is provided within the final dataset. For the 403 events selected from the DePreSys

record, this data is taken from the calibrated variables (as described and validated in Sections 4.2 and

A.1). This data has therefore been bias corrected. For the 9 events taken from the UKCP18 record, only

the 100m wind speed data has been bias corrected (as described in Section 4.2.1). The surface temper-

ature and solar radiation data have been taken directly from the UKCP18 global projections (cropped to

the European region) and hence may still contain biases. These should therefore be used with caution.

It should also be noted that using this approach, in which primarily historical DePreSys adverse weather

scenarios are used to represent events in future warming levels, means that the underlying meteoro-

logical data associated with the event is not taken from a period with the same global warming level.

For example, DePreSys events in 1965, 1974 and 1987 are selected to represent the UK winter wind-

drought-peak-demand scenario with a 100 year return period in terms of severity at the 4◦C warming

level, as shown in rows 4-6 from the bottom of Table 16. As previously described, this approach was

taken because the DePreSys data has been fully bias corrected while the UKCP18 data has not. As

such, while the characteristics of the adverse weather event itself (the duration or severity) will be rep-

resentative of the future warming level (as is the aim of the study), it should be highlighted that the

meteorological conditions that underpin the event may not be representative of that warming level. In

particular, surface temperature values may be lower on average in the data taken from the historical

period. Since (especially for the UK) wind dominates the WDI (as described in Section 4.3), this is

not expected to impact results when testing the resilience of very renewable future electricity systems,

except in the case where extremely high electrification of the heating and cooling is assumed to have

taken place. In this case it may be appropriate for the user to apply an uplift factor to the temperatures,

similar to the approach used by Hay et al. (2000).
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5 The Adverse Weather Scenarios for Future Electricity Systems

dataset

The final dataset of adverse weather scenarios for future electricity systems consists of daily time se-

ries of gridded surface temperature, 100m wind speed and net surface solar radiation, at a 60 x 60 km

spatial resolution, covering a European domain. This data is representative of a selection of adverse

weather scenarios, as summarised in Tables 16 - 22 in the Appendix (Section A.2).

Each adverse weather scenario is contained within a time slice of data. For summer-time events, one

calendar year (January - December) of data is provided, with the summer-time event occurring in the

summer of that year. For winter-time events, two calendar years of data are provided, with the winter-

time event occurring in the winter (October-March) intersecting the two calendar years. The data has

been made available in a NetCDF format, and in all cases, the start date, duration and severity of the

adverse weather event, contained within the time slice of data, are given in the NetCDF global attributes

(see Section A.3).

Three types of long-duration adverse weather scenarios are represented: winter-time wind-drought-

peak-demand events, summer-time wind-drought-peak-demand events, and summer-time surplus gen-

eration events. These are provided at various extreme levels (1 in 2, 5, 10, 20 ,50 and 100-year events);

and for a range of current and nominal future climate change warming levels (1.2 [current day as of

2021], 1.5, 2, 3, and 4 degrees Celsius above pre-industrial level), representative of events impacting

either just the UK, or Europe as a whole.

As described in previous sections of this report, the data provided are derived from the Met Office

DePreSys hindcast, according to the climate change impacts identified from UKCP18. These sections

presented the methods developed for characterising and representing these adverse weather scenar-

ios, and the approach used to compile the final dataset.

Use of this data is subject to the terms of the Open Government Licence 27, and the following ac-

knowledgement must be given when using the data: ‘ c© Crown Copyright 2021, Met Office, funded by

the National Infrastructure Commission’.

This dataset is freely available to download (see Section 5.1), and hence can be widely used to more

rigorously stress test proposed future highly renewable electricity systems. This will help to better en-

sure electricity system resilience to challenging weather and climate conditions, and security of supply

in a net-zero future.
27http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ (Accessed 03/06/2021)
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5.1 Downloading the data

The gridded meteorological data contained within the Adverse Weather Scenarios for Future Electricity

Systems dataset can be freely downloaded from the CEDA archive:

• Project record: https://catalogue.ceda.ac.uk/uuid/701276b1c63d48e784ba1f3673607628;

• Dataset record: https://catalogue.ceda.ac.uk/uuid/7beeed0bc7fa41feb10be22ee9d10f00;

• Data repository: https://data.ceda.ac.uk/badc/deposited2021/adverse_met_scenarios_electricity/

data

Downloading the data requires the user to register for a free CEDA account28. Once registered, the

user can download the data from the data repository (accessed using the link provided above). A

‘README.txt’ file is include within the data repository, explaining the filing system, file naming conven-

tion used, and file meta data in detail. A copy of this file is also included in the Appendix of this report

(Section A.3). The user should refer to this file and the screen-shots shown in Figures 29 and 30 when

downloading data from the Adverse Weather Scenarios for Future Electricity Systems dataset.

Each panel within Figures 29 and 30 shows a step in the navigation of the CEDA filing system from

the data repository, to reach the gridded meteorological data associated with ‘event 1’, selected to rep-

resent winter-time wind-drought-peak-demand scenarios in the UK, at a 1 in 100 year return level in

terms of duration, for all global warming levels (1.2-4◦C). Screen-shot (a) shows the full data repository;

(b) the sub-directories contained within the ‘winter wind drought’ directory in (a) related to the event re-

gion; (c) the sub-directories contained within the ‘uk’ directory in (b) related to the extreme level (return

period); (d) the sub-directories contained within the ‘return period 1 in 100 years’ directory in (c) related

to the event metric; (e) the sub-directories contained within the ‘duration’ directory in (d) related to the

global warming level; (f) the sub-directories contained within the ‘gwl12-4degC’ directory in (e) related

to the event number; and (g) the gridded meteorological data associated with surface solar radiation

(ssr), surface temperature (tas) and wind speed (windspeed). The file path in each case is shown at the

top of the panel, ending at ‘.../data/winter wind drought/uk/return period 1 in 100 years/duration/gwl12-

4degC/event1’. An equivalent route can be taken to the gridded data associated each adverse weather

scenario contained within the dataset (i.e. each event in each row of Tables 16 - 22). For example, the

gridded meteorological data associated with ‘event 1’, selected to represent summer-time wind-drought-

peak-demand scenarios in Europe, at a 1 in 20 year return level in terms of severity, for global warming

level 4◦C would be reached via the file path ‘.../data/summer wind drought/europe/return period 1 in -

20 years/severity/gwl4degC/event1’.

Each gridded meteorological data file is provided in a NetCDF format, and in all cases, the start date,

duration and severity of the adverse weather event, contained within the time slice of data, are given in
28https://services.ceda.ac.uk/cedasite/register/info/ (Accessed 03/06/2021)

c© Crown Copyright 2021, Met Office 57 of 85

https://catalogue.ceda.ac.uk/uuid/701276b1c63d48e784ba1f3673607628
https://catalogue.ceda.ac.uk/uuid/7beeed0bc7fa41feb10be22ee9d10f00
https://data.ceda.ac.uk/badc/deposited2021/adverse_met_scenarios_electricity/data
https://data.ceda.ac.uk/badc/deposited2021/adverse_met_scenarios_electricity/data
https://services.ceda.ac.uk/cedasite/register/info/


Figure 29: Screen-shots showing the navigation of the CEDA filing system from the data repository, to reach the gridded meteorological data
associated with ‘event 1’, selected to represent winter-time wind-drought-peak-demand scenarios in the UK, at a 1 in 100 year return level in terms
of duration, for all global warming levels (1.2-4◦C): Part 1.

the NetCDF global attributes. These are described in more detail in the associated ‘README.txt’ file

contained within the data repository and shown in Section A.3.
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Figure 30: Screen-shots showing the navigation of the CEDA filing system from the data repository, to reach the gridded meteorological data
associated with ‘event 1’, selected to represent winter-time wind-drought-peak-demand scenarios in the UK, at a 1 in 100 year return level in terms
of duration, for all global warming levels (1.2-4◦C): Part 2.
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6 Summary and Conclusion

This report has presented the methods developed for creating the ‘Adverse Weather Scenarios for Fu-

ture Electricity Systems’ dataset of long-duration events. This dataset characterises winter-time and

summer-time wind-drought-peak-demand events, and summer-time surplus generation events, in the

UK and in Europe. It contains gridded daily average meteorological data (surface temperature, 100m

wind speed and surface solar radiation) associated with a range of examples of such events, capturing

various extreme levels (1 in 2, 5, 10, 20, 50 and 100 year return period events) and climate warming

levels (current day, 1.5◦C, 2◦C, 3◦C and 4◦C above pre-industrial levels). The dataset is freely available

to download from the CEDA archive.

Firstly, a summary of the methods developed for characterising and identifying long-duration adverse

weather events within any suitable gridded meteorological dataset, was presented. Following this, ad-

verse weather scenarios were identified within three data sources: historical reanalysis (ERA5); his-

torical climate model hindcasts (providing more than 2000 alternative plausible weather years), created

using the Met Office decadal prediction system; and future climate projections (capturing how weather is

likely to change in future climates), taken from UKCP18. These data sources are used to allow for alter-

native plausible (potentially more extreme) adverse weather scenarios than those seen in the historical

record to be represented, and to allow for the effect of climate change to be explored and captured.

Before identifying the adverse weather scenarios in the climate model hindcasts and projections, the

associated meteorological data underwent calibration and rigorous validation. This was done to ensure

that the climate model data was not biased or missing any information, and hence was fit for purpose.

Specifically, a univariate variance scaling approach was used to bias correct the model data, and data

science generalised additive models are developed to estimate 100m (above ground) wind speed from

10m wind speed, and to estimate surface solar radiation coherently with other weather variables. These

models are shown to produce calibrated hindcast data that has characteristics (such as inter-variable,

spatial and temporal dependencies) consistent with historical reanalysis.

In addition, in both cases the climate model data was available on a 60 km × 60 km, daily spatial-

temporal resolution, hence methods for downscaling in space and time were explored. A downscaling

method was successfully applied to the surface temperature data, however, further method develop-

ment was found to be required for the 100m wind speed and surface solar radiation variables. This

necessitated the sharing of the lower resolution version of all variables, for consistency. Downscaling

of data for energy applications is an active research area, with several groups currently working in this

area. It is therefore possible that any alternative approaches that are developed in the future could be

applied to the data contained within the final adverse weather scenario dataset, providing data at the

desired higher resolution.
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Adverse weather scenarios identified across the three data sources were then compared graphically,

identifying that, as hoped, for all event types, the hindcasts included events that were more extreme than

those observed in the historical record (ERA5). This means that including these additional 2000 model

years of data within the analysis allows for the exploration of ‘unseen’, unprecedented meteorological

events. In addition, the change in UKCP18 adverse weather scenarios over time was explored as an

initial indication of the effect of climate change. This highlighted the climate sensitivity of European-

wide wind-drought-peak-demand scenarios, particularly in the summer, due to rising temperatures and

hence changes in demand for heating/cooling; and the relative lack of climate sensitivity in UK sce-

narios. This was shown to be due to the relative dominance of wind generation within the UK, due to

the high level of installed UK wind renewables used in this study. A brief sensitivity study was included

to explore how this climate sensitivity changed when an increasingly strong temperature-demand rela-

tionship was used (i.e. increasing the electrification of heating). This showed that moderate increases

in this temperature-demand relationship, equivalent to the current day French system, gave consistent

results. This means that in order for a climate change signal to be expected in the severity or duration

of UK wind-drought-peak-demand events either: the installed renewables must be lower than currently

anticipated for 2050; and/or the electrification of heating and cooling must increase beyond the current

French levels.

The aim of this study is not to assess the impact of climate change on electricity systems, but to develop

a system agnostic approach for quantifying adverse weather scenarios, to ultimately provide a useful

dataset for assessing the vulnerability of future system configurations. As such, the sensitivity study

showed that although the climate change sensitivity of events may be somewhat conditional on the

chosen electricity system configuration, the adverse weather scenarios shared here are relevant for a

range of potential future electricity systems. Hence, these can now be used by others to further explore

how such adverse weather scenarios will impact other electricity system configurations (e.g. those with

highly electrified heating/cooling).

A non-stationary statistical extreme value analysis was then applied to the adverse weather scenarios

for the three data sources in combination, to quantify the extremity (i.e. the return period) of events, and

how these may change in future warmer climates. This analysis provided a return level curve for each

event type (winter wind-drought-peak-demand, summer wind-drought-peak-demand and summer sur-

plus generation), event metric (duration, severity), region (UK and Europe), and global warming level of

interest (1.2, 1.5, 2, 3, 4◦C above pre-industrial global mean temperature). For each event combination,

the extreme value analysis model was conditioned on global mean surface temperature, subsequently

allowing for the extremity of the given event metric (duration/severity) associated with a return level of

interest (e.g. 1 in 100 years) to be estimated for any given global mean surface temperature warming

level. For example, allowing for insights such as: a UK winter-time wind-drought-peak-demand-event
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expected to occur on average once every 20 years (1 in 20 year event) in the current day climate (warm-

ing level 1.2◦C above pre-industrial) has a duration of 13-14 days. A number of different extreme value

analysis model structures were tested and validated, and the final models, based on the best fitting

model structure, were found to produce results consistent with those in the initial exploration of the ad-

verse weather scenarios.

The results of the statistical extreme value analysis were then used to select relevant adverse weather

scenarios to represent each event combination. These results were first used to identify how many

distinct warming levels should be represented in each event combination. For each distinct warming

level, 3 adverse weather scenarios were then sampled from those within the DePreSys hindcast record

characterising the associated return level range (e.g. 13-14 days). This was done such that a the 3

events captured a range of values of the event metrics. Where the return level range was too high to in-

clude any DePreSys events, one event from the UKCP18 record was included. The underlying gridded

DePreSys hindcast has been fully bias corrected, however UKCP18 temperature and solar radiation

data has not, hence these UKCP18 events should be used with caution.

Finally, the resulting ‘Adverse Weather Scenarios for Future Electricity Systems’ dataset of long-duration

events was summarised and a brief how-to guide on downloading the data from the CEDA archive was

included.

This study has provided a consistent approach for identifying, characterising and quantifying long-

duration adverse weather scenarios for highly-renewable electricity systems, while aiming to be as

energy system agnostic as possible. The resulting ‘Adverse Weather Scenarios for Future Electricity

Systems’ dataset of long-duration events is therefore relevant for stress testing a range of potential fu-

ture electricity systems. This will ultimately help energy system modellers to ensure security of supply

in a future net-zero world.
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8 Glossary

AIC = Akaike information criterion

CEDA = Centre for Environmental Data Analysis

CDD = Cooling Degree Days

CMIP = Coupled Model Inter-comparison Project

DePreSys = Decadal Prediction System

DNR = Demand Net of Renewables

EVA = Extreme Value Analysis

GAM = Generalised Additive Model

GCM = Global Climate Model

GMST = Global Mean Surface Temperature

GPD = Generalised Pareto Distribution

GW = Gigawatt

HDD = Heating Degree Days

IEC = International Electrotechnical Commission

NAO = North Atlantic Oscillation

PPE = Perturbed Parameter Ensemble

RCM = Regional Climate Model

RL = Return Level

RND = Renewables Net of Demand

SE UK = South East UK

ssr = surface solar radiation

SW EU = South West Europe

SGI = Surplus Generation Index

tas = temperature at surface

TOA = Top Of Atmosphere

UKCP18 = United Kingdom Climate Projections 2018

WDD = Weather Dependent Demand

WDI = Wind Drought Index

windspeed = wind speed (at 100m)

WL = Warming Level
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A Appendix

A.1 Validation of Calibrated DePreSys data

This section presents a thorough validation of the final calibrated DePreSys data, used to identify the

DePreSys adverse weather events in Section 4.3, and make up the final ‘Adverse Weather Scenarios

for Future Electricity Systems’ dataset in Section 5. These plots are referred to and discussed in Section

4.2.

Figure 31: A comparison of the distribution of surface temperature data in the ERA5 and calibrated DePreSys datasets, in summer (top row) and
winter (bottom row) for the UK (left), France (middle) and Spain (right).
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Figure 32: A comparison of the distribution of 100m wind speed data in the ERA5 and calibrated DePreSys datasets, in summer (top row) and
winter (bottom row) for the UK (left), France (middle) and Spain (right).

Figure 33: A comparison of the distribution of surface solar radiation data in the ERA5 and calibrated DePreSys datasets, in summer (top row) and
winter (bottom row) for the UK (left), France (middle) and Spain (right).
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Figure 34: A comparison of the relationship between surface temperature and 100m wind speed in the ERA5 and calibrated DePreSys datasets, in
summer (top row) and winter (bottom row) for the UK (left), France (middle) and Spain (right).

Figure 35: A comparison of the relationship between surface temperature and surface solar radiation in the ERA5 and calibrated DePreSys datasets,
in summer (top row) and winter (bottom row) for the UK (left), France (middle) and Spain (right).
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Figure 36: A comparison of the relationship between 100m wind speed and surface solar radiation in the ERA5 and calibrated DePreSys datasets,
in summer (top row) and winter (bottom row) for the UK (left), France (middle) and Spain (right).

Figure 37: A comparison of the temporal variability of surface temperature (for the years 2000-2005) in the ERA5 and calibrated DePreSys datasets,
for the UK (left), France (middle) and Spain (right).
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Figure 38: A comparison of the temporal variability of 100m wind speed (for the years 2000-2005) in the ERA5 and calibrated DePreSys datasets,
for the UK (left), France (middle) and Spain (right).

Figure 39: A comparison of the temporal variability of surface solar radiation (for the years 2000-2005) in the ERA5 and calibrated DePreSys
datasets, for the UK (left), France (middle) and Spain (right).
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Figure 40: A comparison of the relationship between surface temperature in two grid cells located approximately 170km apart in the ERA5 and
calibrated DePreSys datasets, in summer (top row) and winter (bottom row) for the UK (left), France (middle) and Spain (right).

Figure 41: A comparison of the relationship between 100m wind speed in two grid cells located approximately 170km apart in the ERA5 and
calibrated DePreSys datasets, in summer (top row) and winter (bottom row) for the UK (left), France (middle) and Spain (right).
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Figure 42: A comparison of the relationship between surface solar radiation in two grid cells located approximately 170km apart in the ERA5 and
calibrated DePreSys datasets, in summer (top row) and winter (bottom row) for the UK (left), France (middle) and Spain (right).
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A.2 Tables of selected events
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DataSource Duration Severity StartDate Label EventNumber

DePreSys 6 0.89 1993-02-06 UK Winter WD Duration RTL=2years warmlev=1.2-4degC 1

DePreSys 6 2.29 1976-12-12 UK Winter WD Duration RTL=2years warmlev=1.2-4degC 2

DePreSys 6 2.75 1999-03-24 UK Winter WD Duration RTL=2years warmlev=1.2-4degC 3

DePreSys 9 3.81 1978-02-09 UK Winter WD Duration RTL=5years warmlev=1.2-4degC 1

DePreSys 9 6.02 2011-10-11 UK Winter WD Duration RTL=5years warmlev=1.2-4degC 2

DePreSys 9 5.35 1993-03-02 UK Winter WD Duration RTL=5years warmlev=1.2-4degC 3

DePreSys 11 3.69 1998-02-12 UK Winter WD Duration RTL=10years warmlev=1.2-4degC 1

DePreSys 12 9.29 1995-03-12 UK Winter WD Duration RTL=10years warmlev=1.2-4degC 2

DePreSys 11 5.54 2005-10-04 UK Winter WD Duration RTL=10years warmlev=1.2-4degC 3

DePreSys 13 7.17 2012-02-18 UK Winter WD Duration RTL=20years warmlev=1.2-4degC 1

DePreSys 14 13.21 2002-01-08 UK Winter WD Duration RTL=20years warmlev=1.2-4degC 2

DePreSys 14 3.59 1987-11-01 UK Winter WD Duration RTL=20years warmlev=1.2-4degC 3

DePreSys 16 6.41 1987-10-31 UK Winter WD Duration RTL=50years warmlev=1.2-4degC 1

DePreSys 17 10.93 1974-01-15 UK Winter WD Duration RTL=50years warmlev=1.2-4degC 2

DePreSys 16 12.35 1969-02-03 UK Winter WD Duration RTL=50years warmlev=1.2-4degC 3

DePreSys 18 5.49 2012-12-02 UK Winter WD Duration RTL=100years warmlev=1.2-4degC 1

DePreSys 19 11.94 1987-01-23 UK Winter WD Duration RTL=100years warmlev=1.2-4degC 2

DePreSys 17 10.93 1974-01-15 UK Winter WD Duration RTL=100years warmlev=1.2-4degC 3

DePreSys 30 19.31 2006-12-01 UK Winter WD Duration Maximum 1

DePreSys 26 13.36 1963-01-31 UK Winter WD Duration Maximum 2

DePreSys 26 12.01 1975-03-04 UK Winter WD Duration Maximum 3

DePreSys 5 2.74 1974-12-19 UK Winter WD Severity RTL=2years warmlev=1.2-4degC 1

DePreSys 8 2.79 2005-12-27 UK Winter WD Severity RTL=2years warmlev=1.2-4degC 2

DePreSys 7 2.75 1975-03-07 UK Winter WD Severity RTL=2years warmlev=1.2-4degC 3

DePreSys 6 4.52 1971-02-11 UK Winter WD Severity RTL=5years warmlev=1.2-3degC 1

DePreSys 11 4.88 2008-12-16 UK Winter WD Severity RTL=5years warmlev=1.2-3degC 2

DePreSys 12 4.55 1975-01-11 UK Winter WD Severity RTL=5years warmlev=1.2-3degC 3

DePreSys 6 4.25 2005-12-02 UK Winter WD Severity RTL=5years warmlev=4degC 1

DePreSys 14 4.52 1983-12-11 UK Winter WD Severity RTL=5years warmlev=4degC 2

DePreSys 8 4.49 1970-02-08 UK Winter WD Severity RTL=5years warmlev=4degC 3

DePreSys 9 6.10 1972-12-14 UK Winter WD Severity RTL=10years warmlev=1.2-3degC 1

DePreSys 11 6.36 1970-02-16 UK Winter WD Severity RTL=10years warmlev=1.2-3degC 2

DePreSys 7 6.23 1980-12-04 UK Winter WD Severity RTL=10years warmlev=1.2-3degC 3

DePreSys 8 5.61 2008-02-28 UK Winter WD Severity RTL=10years warmlev=4degC 1

DePreSys 10 5.95 1985-12-06 UK Winter WD Severity RTL=10years warmlev=4degC 2

DePreSys 9 6.10 1972-12-14 UK Winter WD Severity RTL=10years warmlev=4degC 3

DePreSys 8 7.59 1975-03-09 UK Winter WD Severity RTL=20years warmlev=1.2-3degC 1

DePreSys 13 7.85 1989-01-06 UK Winter WD Severity RTL=20years warmlev=1.2-3degC 2

DePreSys 12 7.94 2009-12-29 UK Winter WD Severity RTL=20years warmlev=1.2-3degC 3

DePreSys 10 6.91 1969-02-22 UK Winter WD Severity RTL=20years warmlev=4degC 1

DePreSys 12 7.56 2010-12-05 UK Winter WD Severity RTL=20years warmlev=4degC 2

DePreSys 8 7.59 1975-03-09 UK Winter WD Severity RTL=20years warmlev=4degC 3

DePreSys 13 9.82 1974-02-24 UK Winter WD Severity RTL=50years warmlev=1.2-3degC 1

DePreSys 16 10.22 2001-12-18 UK Winter WD Severity RTL=50years warmlev=1.2-3degC 2

DePreSys 22 10.76 2011-02-20 UK Winter WD Severity RTL=50years warmlev=1.2-3degC 3

DePreSys 9 8.56 1970-02-15 UK Winter WD Severity RTL=50years warmlev=4degC 1

DePreSys 18 9.54 1968-02-19 UK Winter WD Severity RTL=50years warmlev=4degC 2

DePreSys 13 9.15 1979-11-24 UK Winter WD Severity RTL=50years warmlev=4degC 3

DePreSys 15 12.25 2005-01-28 UK Winter WD Severity RTL=100years warmlev=1.2-3degC 1

DePreSys 23 12.86 2010-12-18 UK Winter WD Severity RTL=100years warmlev=1.2-3degC 2

DePreSys 14 11.84 1983-01-25 UK Winter WD Severity RTL=100years warmlev=1.2-3degC 3

DePreSys 14 9.70 1965-12-07 UK Winter WD Severity RTL=100years warmlev=4degC 1

DePreSys 17 10.93 1974-01-15 UK Winter WD Severity RTL=100years warmlev=4degC 2

DePreSys 18 11.03 1987-10-30 UK Winter WD Severity RTL=100years warmlev=4degC 3

DePreSys 23 20.41 1963-02-09 UK Winter WD Severity Maximum 1

DePreSys 30 19.31 2006-12-01 UK Winter WD Severity Maximum 2

DePreSys 25 17.42 1973-02-16 UK Winter WD Severity Maximum 3

Table 16: Table summarising the events selected to represent the UK winter-time wind-drought-peak-demand scenarios in terms of duration and
severity, for each extreme level and warming level(s) of interest. Each event is summarised in terms of the data source (DePreSys or UKCP18); event
duration; event severity; the event start date within the data record; a label explaining the event type, region, metric and return level it represents;
and the number of the event (up to 3 selected to represent each event combination). Here WD=wind-drought-peak-demand, and RTL=return level.
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DataSource Duration Severity StartDate Label EventNumber

DePreSys 7 1.18 1988-07-07 UK Summer WD Duration RTL=2years warmlev=1.2-4degC 1

DePreSys 7 3.30 2008-07-22 UK Summer WD Duration RTL=2years warmlev=1.2-4degC 2

DePreSys 7 3.87 1983-07-21 UK Summer WD Duration RTL=2years warmlev=1.2-4degC 3

DePreSys 10 2.69 2005-07-12 UK Summer WD Duration RTL=5years warmlev=1.2-4degC 1

DePreSys 11 3.85 2003-07-23 UK Summer WD Duration RTL=5years warmlev=1.2-4degC 2

DePreSys 10 3.46 1999-08-04 UK Summer WD Duration RTL=5years warmlev=1.2-4degC 3

DePreSys 13 3.83 1978-06-05 UK Summer WD Duration RTL=10years warmlev=1.2-3degC 1

DePreSys 13 5.77 1973-07-30 UK Summer WD Duration RTL=10years warmlev=1.2-3degC 2

DePreSys 13 3.80 2002-07-03 UK Summer WD Duration RTL=10years warmlev=1.2-3degC 3

DePreSys 13 2.42 1982-07-14 UK Summer WD Duration RTL=10years warmlev=4degC 1

DePreSys 14 7.33 1977-04-09 UK Summer WD Duration RTL=10years warmlev=4degC 2

DePreSys 14 3.40 1980-04-05 UK Summer WD Duration RTL=10years warmlev=4degC 3

DePreSys 15 3.25 1990-07-07 UK Summer WD Duration RTL=20years warmlev=1.2-4degC 1

DePreSys 16 6.46 1982-07-21 UK Summer WD Duration RTL=20years warmlev=1.2-4degC 2

DePreSys 15 4.07 1990-06-26 UK Summer WD Duration RTL=20years warmlev=1.2-4degC 3

DePreSys 18 4.69 1992-07-25 UK Summer WD Duration RTL=50years warmlev=1.2-4degC 1

DePreSys 19 8.12 1974-07-23 UK Summer WD Duration RTL=50years warmlev=1.2-4degC 2

DePreSys 18 8.33 1990-08-16 UK Summer WD Duration RTL=50years warmlev=1.2-4degC 3

DePreSys 19 5.31 2014-06-20 UK Summer WD Duration RTL=100years warmlev=1.2-3degC 1

DePreSys 20 9.76 2007-09-29 UK Summer WD Duration RTL=100years warmlev=1.2-3degC 2

DePreSys 21 4.35 1991-07-10 UK Summer WD Duration RTL=100years warmlev=1.2-3degC 3

DePreSys 20 4.35 2015-08-16 UK Summer WD Duration RTL=100years warmlev=4degC 1

DePreSys 24 9.49 1980-07-19 UK Summer WD Duration RTL=100years warmlev=4degC 2

DePreSys 28 12.47 1986-07-17 UK Summer WD Duration Maximum 1

DePreSys 26 7.61 1976-08-05 UK Summer WD Duration Maximum 2

DePreSys 26 10.37 1980-07-11 UK Summer WD Duration Maximum 3

DePreSys 4 2.10 1984-08-09 UK Summer WD Severity RTL=2years warmlev=1.2-4degC 1

DePreSys 12 2.10 1990-08-23 UK Summer WD Severity RTL=2years warmlev=1.2-4degC 2

DePreSys 10 2.10 2004-08-27 UK Summer WD Severity RTL=2years warmlev=1.2-4degC 3

DePreSys 8 3.24 1995-06-26 UK Summer WD Severity RTL=5years warmlev=1.2-3degC 1

DePreSys 11 3.30 1996-07-27 UK Summer WD Severity RTL=5years warmlev=1.2-3degC 2

DePreSys 12 3.25 1989-06-03 UK Summer WD Severity RTL=5years warmlev=1.2-3degC 3

DePreSys 8 3.48 1994-04-11 UK Summer WD Severity RTL=5years warmlev=4degC 1

DePreSys 16 3.66 1977-08-09 UK Summer WD Severity RTL=5years warmlev=4degC 2

DePreSys 7 3.50 2003-08-13 UK Summer WD Severity RTL=5years warmlev=4degC 3

DePreSys 9 4.29 2003-07-21 UK Summer WD Severity RTL=10years warmlev=1.2-3degC 1

DePreSys 13 4.44 2005-08-06 UK Summer WD Severity RTL=10years warmlev=1.2-3degC 2

DePreSys 9 4.35 1996-06-13 UK Summer WD Severity RTL=10years warmlev=1.2-3degC 3

DePreSys 7 4.39 1973-08-05 UK Summer WD Severity RTL=10years warmlev=4degC 1

DePreSys 14 4.61 1971-07-18 UK Summer WD Severity RTL=10years warmlev=4degC 2

DePreSys 10 4.96 1978-04-15 UK Summer WD Severity RTL=10years warmlev=4degC 3

DePreSys 11 5.13 1998-04-29 UK Summer WD Severity RTL=20years warmlev=1.2-3degC 1

DePreSys 14 5.57 2011-07-29 UK Summer WD Severity RTL=20years warmlev=1.2-3degC 2

DePreSys 10 5.35 1989-04-06 UK Summer WD Severity RTL=20years warmlev=1.2-3degC 3

DePreSys 10 5.35 1989-04-06 UK Summer WD Severity RTL=20years warmlev=4degC 1

DePreSys 21 5.97 1989-06-27 UK Summer WD Severity RTL=20years warmlev=4degC 2

DePreSys 11 5.50 1994-08-10 UK Summer WD Severity RTL=20years warmlev=4degC 3

DePreSys 16 6.46 1982-07-21 UK Summer WD Severity RTL=50years warmlev=1.2-3degC 1

DePreSys 21 6.90 1989-07-04 UK Summer WD Severity RTL=50years warmlev=1.2-3degC 2

DePreSys 15 6.42 1975-07-01 UK Summer WD Severity RTL=50years warmlev=1.2-3degC 3

DePreSys 13 7.18 1975-09-25 UK Summer WD Severity RTL=50years warmlev=4degC 1

DePreSys 25 7.99 2015-04-06 UK Summer WD Severity RTL=50years warmlev=4degC 2

DePreSys 24 7.87 1973-07-08 UK Summer WD Severity RTL=50years warmlev=4degC 3

DePreSys 15 7.60 1990-04-07 UK Summer WD Severity RTL=100years warmlev=1.2-3degC 1

DePreSys 25 8.10 1990-07-16 UK Summer WD Severity RTL=100years warmlev=1.2-3degC 2

DePreSys 26 7.61 1976-08-05 UK Summer WD Severity RTL=100years warmlev=1.2-3degC 3

DePreSys 14 8.16 1987-08-07 UK Summer WD Severity RTL=100years warmlev=4degC 1

DePreSys 20 8.87 1981-04-10 UK Summer WD Severity RTL=100years warmlev=4degC 2

DePreSys 16 8.15 1974-07-28 UK Summer WD Severity RTL=100years warmlev=4degC 3

DePreSys 28 12.47 1986-07-17 UK Summer WD Severity Maximum 1

DePreSys 20 10.50 1970-08-19 UK Summer WD Severity Maximum 2

DePreSys 26 10.37 1980-07-11 UK Summer WD Severity Maximum 3

Table 17: Table summarising the events selected to represent the UK summer-time wind-drought-peak-demand scenarios in terms of duration and
severity, for each extreme level and warming level(s) of interest. Each event is summarised in terms of the data source (DePreSys or UKCP18); event
duration; event severity; the event start date within the data record; a label explaining the event type, region, metric and return level it represents;
and the number of the event (up to 3 selected to represent each event combination). Here WD=wind-drought-peak-demand, and RTL=return level.
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DataSource Duration Severity StartDate Label EventNumber

DePreSys 6 0.73 2011-07-09 UK Summer SG Duration RTL=2years warmlev=1.2-4degC 1

DePreSys 6 2.45 1965-08-28 UK Summer SG Duration RTL=2years warmlev=1.2-4degC 2

DePreSys 6 3.03 2007-05-06 UK Summer SG Duration RTL=2years warmlev=1.2-4degC 3

DePreSys 8 1.50 1985-04-14 UK Summer SG Duration RTL=5years warmlev=1.2-4degC 1

DePreSys 9 5.07 2010-09-21 UK Summer SG Duration RTL=5years warmlev=1.2-4degC 2

DePreSys 8 4.61 2001-09-06 UK Summer SG Duration RTL=5years warmlev=1.2-4degC 3

DePreSys 10 3.52 1969-09-15 UK Summer SG Duration RTL=10years warmlev=1.2-4degC 1

DePreSys 11 5.49 2012-04-01 UK Summer SG Duration RTL=10years warmlev=1.2-4degC 2

DePreSys 10 7.87 1997-04-08 UK Summer SG Duration RTL=10years warmlev=1.2-4degC 3

DePreSys 12 4.62 2002-04-01 UK Summer SG Duration RTL=20years warmlev=1.2-4degC 1

DePreSys 13 6.95 2012-09-16 UK Summer SG Duration RTL=20years warmlev=1.2-4degC 2

DePreSys 12 6.32 2007-09-18 UK Summer SG Duration RTL=20years warmlev=1.2-4degC 3

DePreSys 14 4.88 1998-05-03 UK Summer SG Duration RTL=50years warmlev=1.2-4degC 1

DePreSys 15 8.90 2012-09-15 UK Summer SG Duration RTL=50years warmlev=1.2-4degC 2

DePreSys 14 8.29 2007-07-28 UK Summer SG Duration RTL=50years warmlev=1.2-4degC 3

DePreSys 16 7.63 1991-09-05 UK Summer SG Duration RTL=100years warmlev=1.2-4degC 1

DePreSys 18 11.78 1969-09-12 UK Summer SG Duration RTL=100years warmlev=1.2-4degC 2

DePreSys 17 9.22 1973-05-21 UK Summer SG Duration RTL=100years warmlev=1.2-4degC 3

DePreSys 26 13.06 1981-09-11 UK Summer SG Duration Maximum 1

DePreSys 24 12.13 2015-04-01 UK Summer SG Duration Maximum 2

DePreSys 23 10.33 2012-09-15 UK Summer SG Duration Maximum 3

DePreSys 6 2.62 1976-09-25 UK Summer SG Severity RTL=2years warmlev=1.2-4degC 1

DePreSys 10 2.68 2011-04-17 UK Summer SG Severity RTL=2years warmlev=1.2-4degC 2

DePreSys 7 2.63 2007-09-16 UK Summer SG Severity RTL=2years warmlev=1.2-4degC 3

DePreSys 8 4.20 1995-04-01 UK Summer SG Severity RTL=5years warmlev=1.2-4degC 1

DePreSys 10 4.34 1981-09-19 UK Summer SG Severity RTL=5years warmlev=1.2-4degC 2

DePreSys 12 4.19 1967-06-01 UK Summer SG Severity RTL=5years warmlev=1.2-4degC 3

DePreSys 8 5.36 2007-05-05 UK Summer SG Severity RTL=10years warmlev=1.2-4degC 1

DePreSys 12 5.74 2000-04-01 UK Summer SG Severity RTL=10years warmlev=1.2-4degC 2

DePreSys 8 5.72 1991-04-19 UK Summer SG Severity RTL=10years warmlev=1.2-4degC 3

DePreSys 8 6.50 1991-09-07 UK Summer SG Severity RTL=20years warmlev=1.2-4degC 1

DePreSys 13 7.03 2012-09-11 UK Summer SG Severity RTL=20years warmlev=1.2-4degC 2

DePreSys 9 6.80 2011-09-16 UK Summer SG Severity RTL=20years warmlev=1.2-4degC 3

DePreSys 12 8.47 1994-09-16 UK Summer SG Severity RTL=50years warmlev=1.2-4degC 1

DePreSys 19 9.03 2008-04-16 UK Summer SG Severity RTL=50years warmlev=1.2-4degC 2

DePreSys 14 8.29 2007-07-28 UK Summer SG Severity RTL=50years warmlev=1.2-4degC 3

DePreSys 17 9.87 1960-04-19 UK Summer SG Severity RTL=100years warmlev=1.2-4degC 1

DePreSys 16 10.04 1962-04-24 UK Summer SG Severity RTL=100years warmlev=1.2-4degC 2

DePreSys 18 9.80 1964-09-11 UK Summer SG Severity RTL=100years warmlev=1.2-4degC 3

DePreSys 26 13.06 1981-09-11 UK Summer SG Severity Maximum 1

DePreSys 16 12.14 2000-09-15 UK Summer SG Severity Maximum 2

DePreSys 24 12.13 2015-04-01 UK Summer SG Severity Maximum 3

Table 18: Table summarising the events selected to represent the UK summer-time surplus-generation scenarios in terms of duration and severity,
for each extreme level and warming level(s) of interest. Each event is summarised in terms of the data source (DePreSys or UKCP18); event
duration; event severity; the event start date within the data record; a label explaining the event type, region, metric and return level it represents;
and the number of the event (up to 3 selected to represent each event combination). Here SG=surplus-generation, and RTL=return level.
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DataSource Duration Severity StartDate Label EventNumber

DePreSys 7 1.89 2010-11-20 EU Winter WD Duration RTL=2years warmlev=1.2-4degC 1

DePreSys 7 3.59 1989-01-14 EU Winter WD Duration RTL=2years warmlev=1.2-4degC 2

DePreSys 7 5.27 1990-02-05 EU Winter WD Duration RTL=2years warmlev=1.2-4degC 3

DePreSys 11 1.71 1963-03-14 EU Winter WD Duration RTL=5years warmlev=1.2-4degC 1

DePreSys 11 6.28 1994-01-10 EU Winter WD Duration RTL=5years warmlev=1.2-4degC 2

DePreSys 11 5.04 2005-03-02 EU Winter WD Duration RTL=5years warmlev=1.2-4degC 3

DePreSys 13 3.40 1967-02-02 EU Winter WD Duration RTL=10years warmlev=1.2-4degC 1

DePreSys 14 13.16 2002-01-08 EU Winter WD Duration RTL=10years warmlev=1.2-4degC 2

DePreSys 15 6.18 2009-02-09 EU Winter WD Duration RTL=10years warmlev=1.2-4degC 3

DePreSys 16 6.54 1968-01-27 EU Winter WD Duration RTL=20years warmlev=1.2-4degC 1

DePreSys 18 17.40 1983-01-23 EU Winter WD Duration RTL=20years warmlev=1.2-4degC 2

DePreSys 17 8.10 1960-01-10 EU Winter WD Duration RTL=20years warmlev=1.2-4degC 3

DePreSys 20 11.79 1987-01-20 EU Winter WD Duration RTL=50years warmlev=1.2-2degC 1

DePreSys 21 14.71 1969-02-02 EU Winter WD Duration RTL=50years warmlev=1.2-2degC 2

DePreSys 20 8.69 1984-01-06 EU Winter WD Duration RTL=50years warmlev=1.2-2degC 3

DePreSys 18 10.40 1970-01-05 EU Winter WD Duration RTL=50years warmlev=3-4degC 1

DePreSys 20 11.79 1987-01-20 EU Winter WD Duration RTL=50years warmlev=3-4degC 2

DePreSys 19 15.06 2002-01-14 EU Winter WD Duration RTL=50years warmlev=3-4degC 3

DePreSys 23 7.63 2004-12-31 EU Winter WD Duration RTL=100years warmlev=1.2-3degC 1

DePreSys 25 17.76 2005-02-06 EU Winter WD Duration RTL=100years warmlev=1.2-3degC 2

DePreSys 22 8.60 1966-11-20 EU Winter WD Duration RTL=100years warmlev=1.2-3degC 3

DePreSys 20 8.69 1984-01-06 EU Winter WD Duration RTL=100years warmlev=4degC 1

DePreSys 21 12.30 1979-01-28 EU Winter WD Duration RTL=100years warmlev=4degC 2

DePreSys 23 7.63 2004-12-31 EU Winter WD Duration RTL=100years warmlev=4degC 3

DePreSys 44 32.34 1970-01-19 EU Winter WD Duration Maximum 1

DePreSys 35 22.03 1966-12-28 EU Winter WD Duration Maximum 2

DePreSys 33 25.55 2006-11-29 EU Winter WD Duration Maximum 3

DePreSys 6 2.92 1993-03-25 EU Winter WD Severity RTL=2years warmlev=1.2-4degC 1

DePreSys 9 2.96 2010-02-13 EU Winter WD Severity RTL=2years warmlev=1.2-4degC 2

DePreSys 6 2.97 1964-01-23 EU Winter WD Severity RTL=2years warmlev=1.2-4degC 3

DePreSys 7 5.17 1986-01-20 EU Winter WD Severity RTL=5years warmlev=1.2-2degC 1

DePreSys 13 5.24 1998-01-17 EU Winter WD Severity RTL=5years warmlev=1.2-2degC 2

DePreSys 14 5.06 1963-02-06 EU Winter WD Severity RTL=5years warmlev=1.2-2degC 3

DePreSys 8 4.60 1978-02-20 EU Winter WD Severity RTL=5years warmlev=3-4degC 1

DePreSys 12 5.08 1973-01-03 EU Winter WD Severity RTL=5years warmlev=3-4degC 2

DePreSys 9 5.08 1998-12-30 EU Winter WD Severity RTL=5years warmlev=3-4degC 3

DePreSys 7 6.86 1995-01-15 EU Winter WD Severity RTL=10years warmlev=1.2-2degC 1

DePreSys 14 7.13 2001-12-05 EU Winter WD Severity RTL=10years warmlev=1.2-2degC 2

DePreSys 10 6.97 1963-01-19 EU Winter WD Severity RTL=10years warmlev=1.2-2degC 3

DePreSys 11 6.19 1971-11-28 EU Winter WD Severity RTL=10years warmlev=3-4degC 1

DePreSys 16 6.57 1973-02-05 EU Winter WD Severity RTL=10years warmlev=3-4degC 2

DePreSys 19 6.34 1993-02-19 EU Winter WD Severity RTL=10years warmlev=3-4degC 3

DePreSys 13 9.18 1974-11-29 EU Winter WD Severity RTL=20years warmlev=1.2-2degC 1

DePreSys 18 9.51 2008-02-23 EU Winter WD Severity RTL=20years warmlev=1.2-2degC 2

DePreSys 16 8.84 1968-02-23 EU Winter WD Severity RTL=20years warmlev=1.2-2degC 3

DePreSys 13 7.93 1968-12-06 EU Winter WD Severity RTL=20years warmlev=3-4degC 1

DePreSys 15 9.09 1985-12-24 EU Winter WD Severity RTL=20years warmlev=3-4degC 2

DePreSys 16 8.68 2009-02-18 EU Winter WD Severity RTL=20years warmlev=3-4degC 3

DePreSys 18 11.81 2011-02-16 EU Winter WD Severity RTL=50years warmlev=1.2-2degC 1

DePreSys 21 13.04 1993-01-01 EU Winter WD Severity RTL=50years warmlev=1.2-2degC 2

DePreSys 14 12.93 1987-03-15 EU Winter WD Severity RTL=50years warmlev=1.2-2degC 3

DePreSys 12 10.19 1970-02-14 EU Winter WD Severity RTL=50years warmlev=3-4degC 1

DePreSys 17 10.99 2007-12-10 EU Winter WD Severity RTL=50years warmlev=3-4degC 2

DePreSys 23 12.35 1961-02-21 EU Winter WD Severity RTL=50years warmlev=3-4degC 3

DePreSys 14 14.39 1990-02-01 EU Winter WD Severity RTL=100years warmlev=1.2-2degC 1

DePreSys 25 15.62 2001-02-13 EU Winter WD Severity RTL=100years warmlev=1.2-2degC 2

DePreSys 16 14.24 1967-02-05 EU Winter WD Severity RTL=100years warmlev=1.2-2degC 3

DePreSys 18 12.22 1988-02-03 EU Winter WD Severity RTL=100years warmlev=3-4degC 1

DePreSys 25 14.93 1968-02-02 EU Winter WD Severity RTL=100years warmlev=3-4degC 2

DePreSys 19 11.87 2012-01-17 EU Winter WD Severity RTL=100years warmlev=3-4degC 3

DePreSys 44 32.34 1970-01-19 EU Winter WD Severity Maximum 1

DePreSys 29 31.65 1989-01-03 EU Winter WD Severity Maximum 2

DePreSys 29 31.02 1963-02-01 EU Winter WD Severity Maximum 3

Table 19: Table summarising the events selected to represent the European winter-time wind-drought-peak-demand scenarios in terms of duration
and severity, for each extreme level and warming level(s) of interest. Each event is summarised in terms of the data source (DePreSys or UKCP18);
event duration; event severity; the event start date within the data record; a label explaining the event type, region, metric and return level it
represents; and the number of the event (up to 3 selected to represent each event combination). Here WD=wind-drought-peak-demand, and
RTL=return level.
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DataSource Duration Severity StartDate Label EventNumber

DePreSys 10 2.21 2010-08-18 EU Summer WD Duration RTL=2years warmlev=1.2-2degC 1

DePreSys 10 3.02 2007-08-02 EU Summer WD Duration RTL=2years warmlev=1.2-2degC 2

DePreSys 10 1.41 1976-07-18 EU Summer WD Duration RTL=2years warmlev=1.2-2degC 3

DePreSys 11 1.99 2014-08-04 EU Summer WD Duration RTL=2years warmlev=3degC 1

DePreSys 11 3.14 1999-08-03 EU Summer WD Duration RTL=2years warmlev=3degC 2

DePreSys 11 1.97 1969-08-10 EU Summer WD Duration RTL=2years warmlev=3degC 3

DePreSys 11 2.38 2006-07-01 EU Summer WD Duration RTL=2years warmlev=4degC 1

DePreSys 12 2.86 2009-06-30 EU Summer WD Duration RTL=2years warmlev=4degC 2

DePreSys 11 1.66 1967-05-02 EU Summer WD Duration RTL=2years warmlev=4degC 3

DePreSys 14 3.51 2012-07-14 EU Summer WD Duration RTL=5years warmlev=1.2-1.5degC 1

DePreSys 15 3.97 1980-07-30 EU Summer WD Duration RTL=5years warmlev=1.2-1.5degC 2

DePreSys 14 3.84 1983-07-19 EU Summer WD Duration RTL=5years warmlev=1.2-1.5degC 3

DePreSys 15 3.64 1962-08-13 EU Summer WD Duration RTL=5years warmlev=2degC 1

DePreSys 16 4.94 2000-07-21 EU Summer WD Duration RTL=5years warmlev=2degC 2

DePreSys 16 2.49 1997-07-15 EU Summer WD Duration RTL=5years warmlev=2degC 3

DePreSys 17 2.98 1990-08-11 EU Summer WD Duration RTL=5years warmlev=3degC 1

DePreSys 18 5.64 2010-08-16 EU Summer WD Duration RTL=5years warmlev=3degC 2

DePreSys 17 2.86 2003-08-16 EU Summer WD Duration RTL=5years warmlev=3degC 3

DePreSys 20 4.62 1972-07-02 EU Summer WD Duration RTL=5years warmlev=4degC 1

DePreSys 21 7.65 2012-07-30 EU Summer WD Duration RTL=5years warmlev=4degC 2

DePreSys 22 3.96 2013-07-14 EU Summer WD Duration RTL=5years warmlev=4degC 3

DePreSys 17 2.98 1990-08-11 EU Summer WD Duration RTL=10years warmlev=1.2-1.5degC 1

DePreSys 18 5.64 2010-08-16 EU Summer WD Duration RTL=10years warmlev=1.2-1.5degC 2

DePreSys 17 2.86 2003-08-16 EU Summer WD Duration RTL=10years warmlev=1.2-1.5degC 3

DePreSys 19 4.69 1987-08-01 EU Summer WD Duration RTL=10years warmlev=2degC 1

DePreSys 20 6.52 1982-04-06 EU Summer WD Duration RTL=10years warmlev=2degC 2

DePreSys 19 5.44 1997-08-03 EU Summer WD Duration RTL=10years warmlev=2degC 3

DePreSys 21 6.06 1981-07-20 EU Summer WD Duration RTL=10years warmlev=3degC 1

DePreSys 24 6.84 1990-07-31 EU Summer WD Duration RTL=10years warmlev=3degC 2

DePreSys 21 3.33 1996-08-16 EU Summer WD Duration RTL=10years warmlev=3degC 3

DePreSys 27 5.94 1967-08-02 EU Summer WD Duration RTL=10years warmlev=4degC 1

DePreSys 26 7.84 1969-07-30 EU Summer WD Duration RTL=10years warmlev=4degC 2

DePreSys 28 8.20 1973-07-07 EU Summer WD Duration RTL=10years warmlev=4degC 3

DePreSys 20 4.54 1979-06-26 EU Summer WD Duration RTL=20years warmlev=1.2-1.5degC 1

DePreSys 21 7.56 1975-08-05 EU Summer WD Duration RTL=20years warmlev=1.2-1.5degC 2

DePreSys 21 3.33 1996-08-16 EU Summer WD Duration RTL=20years warmlev=1.2-1.5degC 3

DePreSys 22 6.28 1992-08-12 EU Summer WD Duration RTL=20years warmlev=2degC 1

DePreSys 24 6.84 1990-07-31 EU Summer WD Duration RTL=20years warmlev=2degC 2

DePreSys 23 7.95 1982-07-25 EU Summer WD Duration RTL=20years warmlev=2degC 3

DePreSys 27 5.94 1967-08-02 EU Summer WD Duration RTL=20years warmlev=3degC 1

DePreSys 26 7.84 1969-07-30 EU Summer WD Duration RTL=20years warmlev=3degC 2

DePreSys 28 8.20 1973-07-07 EU Summer WD Duration RTL=20years warmlev=3degC 3

DePreSys 33 7.78 1989-07-14 EU Summer WD Duration RTL=20years warmlev=4degC 1

DePreSys 32 8.69 2008-07-17 EU Summer WD Duration RTL=20years warmlev=4degC 2

DePreSys 23 7.95 1982-07-25 EU Summer WD Duration RTL=50years warmlev=1.2-1.5degC 1

DePreSys 25 7.97 1983-07-28 EU Summer WD Duration RTL=50years warmlev=1.2-1.5degC 2

DePreSys 23 4.65 1987-08-07 EU Summer WD Duration RTL=50years warmlev=1.2-1.5degC 3

DePreSys 27 5.94 1967-08-02 EU Summer WD Duration RTL=50years warmlev=2degC 1

DePreSys 26 7.84 1969-07-30 EU Summer WD Duration RTL=50years warmlev=2degC 2

DePreSys 28 8.20 1973-07-07 EU Summer WD Duration RTL=50years warmlev=2degC 3

DePreSys 33 7.78 1989-07-14 EU Summer WD Duration RTL=50years warmlev=3degC 1

DePreSys 32 8.69 2008-07-17 EU Summer WD Duration RTL=50years warmlev=3degC 2

DePreSys 27 5.94 1967-08-02 EU Summer WD Duration RTL=100years warmlev=1.2-1.5degC 1

DePreSys 26 7.84 1969-07-30 EU Summer WD Duration RTL=100years warmlev=1.2-1.5degC 2

DePreSys 28 8.20 1973-07-07 EU Summer WD Duration RTL=100years warmlev=1.2-1.5degC 3

DePreSys 33 7.78 1989-07-14 EU Summer WD Duration RTL=100years warmlev=2degC 1

DePreSys 32 8.69 2008-07-17 EU Summer WD Duration RTL=100years warmlev=2degC 2

DePreSys 33 7.78 1989-07-14 EU Summer WD Duration Maximum 1

DePreSys 32 8.69 2008-07-17 EU Summer WD Duration Maximum 2

DePreSys 29 11.30 1976-08-05 EU Summer WD Duration Maximum 3

UKCP18 40 23.84 2093-07-04 EU Summer WD Duration RTL=50years warmlev=4degC 1

UKCP18 37 23.36 2077-07-05 EU Summer WD Duration RTL=100years warmlev=3degC 1

UKCP18 45 37.36 2097-07-22 EU Summer WD Duration RTL=100years warmlev=4degC 1

Table 20: Table summarising the events selected to represent the European summer-time wind-drought-peak-demand scenarios in terms of duration,
for each extreme level and warming level(s) of interest. Each event is summarised in terms of the data source (DePreSys or UKCP18); event
duration; event severity; the event start date within the data record; a label explaining the event type, region, metric and return level it represents;
and the number of the event (up to 3 selected to represent each event combination). Here WD=wind-drought-peak-demand, and RTL=return level.
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DataSource Duration Severity StartDate Label EventNumber

DePreSys 10 2.73 2013-08-02 EU Summer WD Severity RTL=2years warmlev=1.2degC 1

DePreSys 14 2.76 1983-06-25 EU Summer WD Severity RTL=2years warmlev=1.2degC 2

DePreSys 14 2.74 2000-08-03 EU Summer WD Severity RTL=2years warmlev=1.2degC 3

DePreSys 9 2.83 2012-07-22 EU Summer WD Severity RTL=2years warmlev=1.5degC 1

DePreSys 12 2.86 2011-07-14 EU Summer WD Severity RTL=2years warmlev=1.5degC 2

DePreSys 7 2.81 1983-08-07 EU Summer WD Severity RTL=2years warmlev=1.5degC 3

DePreSys 8 3.03 2001-08-03 EU Summer WD Severity RTL=2years warmlev=2degC 1

DePreSys 13 3.05 1996-08-06 EU Summer WD Severity RTL=2years warmlev=2degC 2

DePreSys 8 3.03 2001-08-03 EU Summer WD Severity RTL=2years warmlev=2degC 3

DePreSys 9 3.35 2005-07-09 EU Summer WD Severity RTL=2years warmlev=3degC 1

DePreSys 12 3.52 1974-04-29 EU Summer WD Severity RTL=2years warmlev=3degC 2

DePreSys 13 3.56 1989-08-11 EU Summer WD Severity RTL=2years warmlev=3degC 3

DePreSys 9 3.82 1994-04-13 EU Summer WD Severity RTL=2years warmlev=4degC 1

DePreSys 15 4.05 2007-07-03 EU Summer WD Severity RTL=2years warmlev=4degC 2

DePreSys 10 3.86 2005-08-02 EU Summer WD Severity RTL=2years warmlev=4degC 3

DePreSys 11 4.29 1989-08-09 EU Summer WD Severity RTL=5years warmlev=1.2degC 1

DePreSys 14 4.45 1996-08-05 EU Summer WD Severity RTL=5years warmlev=1.2degC 2

DePreSys 14 4.38 2005-08-07 EU Summer WD Severity RTL=5years warmlev=1.2degC 3

DePreSys 10 4.43 1988-04-03 EU Summer WD Severity RTL=5years warmlev=1.5degC 1

DePreSys 19 4.69 1987-08-01 EU Summer WD Severity RTL=5years warmlev=1.5degC 2

DePreSys 14 4.50 1966-04-23 EU Summer WD Severity RTL=5years warmlev=1.5degC 3

DePreSys 12 4.92 1991-08-01 EU Summer WD Severity RTL=5years warmlev=2degC 1

DePreSys 16 5.20 1992-08-10 EU Summer WD Severity RTL=5years warmlev=2degC 2

DePreSys 15 5.02 1978-07-06 EU Summer WD Severity RTL=5years warmlev=2degC 3

DePreSys 16 6.11 1995-07-13 EU Summer WD Severity RTL=5years warmlev=3degC 1

DePreSys 20 6.52 1982-04-06 EU Summer WD Severity RTL=5years warmlev=3degC 2

DePreSys 19 6.34 2004-08-01 EU Summer WD Severity RTL=5years warmlev=3degC 3

DePreSys 13 7.71 1983-04-06 EU Summer WD Severity RTL=5years warmlev=4degC 1

DePreSys 25 7.97 1983-07-28 EU Summer WD Severity RTL=5years warmlev=4degC 2

DePreSys 18 7.59 2004-04-06 EU Summer WD Severity RTL=5years warmlev=4degC 3

DePreSys 15 5.57 2011-08-07 EU Summer WD Severity RTL=10years warmlev=1.2degC 1

DePreSys 20 5.78 2007-08-08 EU Summer WD Severity RTL=10years warmlev=1.2degC 2

DePreSys 14 5.53 1987-08-06 EU Summer WD Severity RTL=10years warmlev=1.2degC 3

DePreSys 17 5.91 2008-08-18 EU Summer WD Severity RTL=10years warmlev=1.5degC 1

DePreSys 25 6.01 1999-08-05 EU Summer WD Severity RTL=10years warmlev=1.5degC 2

DePreSys 17 5.83 1977-08-10 EU Summer WD Severity RTL=10years warmlev=1.5degC 3

DePreSys 17 6.45 1983-07-01 EU Summer WD Severity RTL=10years warmlev=2degC 1

DePreSys 24 6.73 2006-08-09 EU Summer WD Severity RTL=10years warmlev=2degC 2

DePreSys 13 6.99 1994-07-03 EU Summer WD Severity RTL=10years warmlev=2degC 3

DePreSys 18 9.07 1962-04-06 EU Summer WD Severity RTL=10years warmlev=3degC 1

DePreSys 28 8.20 1973-07-07 EU Summer WD Severity RTL=10years warmlev=3degC 2

DePreSys 20 8.20 1980-07-21 EU Summer WD Severity RTL=10years warmlev=3degC 3

DePreSys 26 10.33 1974-07-19 EU Summer WD Severity RTL=10years warmlev=4degC 1

DePreSys 29 11.30 1976-08-05 EU Summer WD Severity RTL=10years warmlev=4degC 2

DePreSys 22 10.77 2000-08-09 EU Summer WD Severity RTL=10years warmlev=4degC 3

DePreSys 18 6.74 1987-04-02 EU Summer WD Severity RTL=20years warmlev=1.2degC 1

DePreSys 24 6.84 1990-07-31 EU Summer WD Severity RTL=20years warmlev=1.2degC 2

DePreSys 15 7.11 1994-04-09 EU Summer WD Severity RTL=20years warmlev=1.2degC 3

DePreSys 18 7.59 2004-04-06 EU Summer WD Severity RTL=20years warmlev=1.5degC 1

DePreSys 25 7.97 1983-07-28 EU Summer WD Severity RTL=20years warmlev=1.5degC 2

DePreSys 33 7.78 1989-07-14 EU Summer WD Severity RTL=20years warmlev=1.5degC 3

DePreSys 18 9.07 1962-04-06 EU Summer WD Severity RTL=20years warmlev=2degC 1

DePreSys 28 8.20 1973-07-07 EU Summer WD Severity RTL=20years warmlev=2degC 2

DePreSys 20 8.20 1980-07-21 EU Summer WD Severity RTL=20years warmlev=2degC 3

DePreSys 26 10.33 1974-07-19 EU Summer WD Severity RTL=20years warmlev=3degC 1

DePreSys 29 11.30 1976-08-05 EU Summer WD Severity RTL=20years warmlev=3degC 2

DePreSys 22 10.77 2000-08-09 EU Summer WD Severity RTL=20years warmlev=3degC 3

DePreSys 18 9.07 1962-04-06 EU Summer WD Severity RTL=50years warmlev=1.2degC 1

DePreSys 15 9.47 1975-04-15 EU Summer WD Severity RTL=50years warmlev=1.2degC 2

DePreSys 19 9.16 1978-07-29 EU Summer WD Severity RTL=50years warmlev=1.2degC 3

DePreSys 18 9.91 1964-04-02 EU Summer WD Severity RTL=50years warmlev=1.5degC 1

DePreSys 26 10.33 1974-07-19 EU Summer WD Severity RTL=50years warmlev=1.5degC 2

DePreSys 15 9.47 1975-04-15 EU Summer WD Severity RTL=50years warmlev=1.5degC 3

DePreSys 29 11.30 1976-08-05 EU Summer WD Severity RTL=50years warmlev=2degC 1

DePreSys 22 10.77 2000-08-09 EU Summer WD Severity RTL=50years warmlev=2degC 2

DePreSys 21 10.91 2005-08-02 EU Summer WD Severity RTL=50years warmlev=2degC 3

DePreSys 26 10.33 1974-07-19 EU Summer WD Severity RTL=100years warmlev=1.2degC 1

DePreSys 29 11.30 1976-08-05 EU Summer WD Severity RTL=100years warmlev=1.2degC 2

DePreSys 22 10.77 2000-08-09 EU Summer WD Severity RTL=100years warmlev=1.2degC 3

DePreSys 29 11.30 1976-08-05 EU Summer WD Severity RTL=100years warmlev=1.5degC 1

DePreSys 21 10.91 2005-08-02 EU Summer WD Severity RTL=100years warmlev=1.5degC 2

DePreSys 29 11.30 1976-08-05 EU Summer WD Severity Maximum 1

DePreSys 21 10.91 2005-08-02 EU Summer WD Severity Maximum 2

DePreSys 22 10.77 2000-08-09 EU Summer WD Severity Maximum 3

UKCP18 24 14.50 2068-08-10 EU Summer WD Severity RTL=20years warmlev=4degC 1

UKCP18 31 14.81 2091-07-16 EU Summer WD Severity RTL=50years warmlev=3degC 1

UKCP18 36 19.82 2088-07-15 EU Summer WD Severity RTL=50years warmlev=4degC 1

UKCP18 24 13.50 2080-07-12 EU Summer WD Severity RTL=100years warmlev=2degC 1

UKCP18 27 17.89 2089-08-02 EU Summer WD Severity RTL=100years warmlev=3degC 1

UKCP18 37 24.18 2082-07-03 EU Summer WD Severity RTL=100years warmlev=4degC 1

Table 21: As in Table 20, but for severity.c© Crown Copyright 2021, Met Office 80 of 85



DataSource Duration Severity StartDate Label EventNumber

DePreSys 6 1.90 2015-06-25 EU Summer SG Duration RTL=2years warmlev=1.2-4degC 1

DePreSys 6 4.29 2009-04-10 EU Summer SG Duration RTL=2years warmlev=1.2-4degC 2

DePreSys 6 3.96 1986-07-31 EU Summer SG Duration RTL=2years warmlev=1.2-4degC 3

DePreSys 8 3.86 1981-05-20 EU Summer SG Duration RTL=5years warmlev=1.2-4degC 1

DePreSys 9 5.78 1981-04-01 EU Summer SG Duration RTL=5years warmlev=1.2-4degC 2

DePreSys 8 1.34 2005-06-01 EU Summer SG Duration RTL=5years warmlev=1.2-4degC 3

DePreSys 10 2.74 1986-05-17 EU Summer SG Duration RTL=10years warmlev=1.2-4degC 1

DePreSys 10 13.03 2002-04-19 EU Summer SG Duration RTL=10years warmlev=1.2-4degC 2

DePreSys 10 5.16 2012-09-29 EU Summer SG Duration RTL=10years warmlev=1.2-4degC 3

DePreSys 11 4.94 1992-07-08 EU Summer SG Duration RTL=20years warmlev=1.2-4degC 1

DePreSys 12 7.43 1983-04-27 EU Summer SG Duration RTL=20years warmlev=1.2-4degC 2

DePreSys 11 4.15 2012-09-12 EU Summer SG Duration RTL=20years warmlev=1.2-4degC 3

DePreSys 13 2.70 1989-06-27 EU Summer SG Duration RTL=50years warmlev=1.2-4degC 1

DePreSys 14 7.76 1990-04-09 EU Summer SG Duration RTL=50years warmlev=1.2-4degC 2

DePreSys 13 3.49 2001-05-02 EU Summer SG Duration RTL=50years warmlev=1.2-4degC 3

DePreSys 16 8.49 1977-04-06 EU Summer SG Duration RTL=100years warmlev=1.2-4degC 1

DePreSys 15 5.56 1981-06-04 EU Summer SG Duration RTL=100years warmlev=1.2-4degC 2

DePreSys 15 5.98 1987-04-11 EU Summer SG Duration RTL=100years warmlev=1.2-4degC 3

DePreSys 23 17.02 2008-04-16 EU Summer SG Duration Maximum 1

DePreSys 19 12.75 1998-04-12 EU Summer SG Duration Maximum 2

DePreSys 19 16.49 2012-04-09 EU Summer SG Duration Maximum 3

DePreSys 5 2.33 1975-09-14 EU Summer SG Severity RTL=2years warmlev=1.2-4degC 1

DePreSys 6 2.38 1979-05-06 EU Summer SG Severity RTL=2years warmlev=1.2-4degC 2

DePreSys 5 2.30 2005-09-18 EU Summer SG Severity RTL=2years warmlev=1.2-4degC 3

DePreSys 7 3.83 1983-05-25 EU Summer SG Severity RTL=5years warmlev=1.2-4degC 1

DePreSys 13 4.08 2003-09-27 EU Summer SG Severity RTL=5years warmlev=1.2-4degC 2

DePreSys 7 3.93 1960-04-27 EU Summer SG Severity RTL=5years warmlev=1.2-4degC 3

DePreSys 7 5.18 1969-09-22 EU Summer SG Severity RTL=10years warmlev=1.2-3degC 1

DePreSys 14 5.38 2014-05-15 EU Summer SG Severity RTL=10years warmlev=1.2-3degC 2

DePreSys 8 5.22 1960-05-26 EU Summer SG Severity RTL=10years warmlev=1.2-3degC 3

DePreSys 8 4.71 1972-05-26 EU Summer SG Severity RTL=10years warmlev=4degC 1

DePreSys 9 5.29 1991-06-28 EU Summer SG Severity RTL=10years warmlev=4degC 2

DePreSys 8 5.22 1960-05-26 EU Summer SG Severity RTL=10years warmlev=4degC 3

DePreSys 8 6.34 1999-04-12 EU Summer SG Severity RTL=20years warmlev=1.2-4degC 1

DePreSys 14 6.51 1980-07-02 EU Summer SG Severity RTL=20years warmlev=1.2-4degC 2

DePreSys 13 6.42 1960-04-21 EU Summer SG Severity RTL=20years warmlev=1.2-4degC 3

DePreSys 8 8.31 1962-04-25 EU Summer SG Severity RTL=50years warmlev=1.2-4degC 1

DePreSys 10 8.47 1966-05-13 EU Summer SG Severity RTL=50years warmlev=1.2-4degC 2

DePreSys 9 7.92 1976-04-01 EU Summer SG Severity RTL=50years warmlev=1.2-4degC 3

DePreSys 11 9.71 1972-04-02 EU Summer SG Severity RTL=100years warmlev=1.2-4degC 1

DePreSys 13 10.31 1984-05-09 EU Summer SG Severity RTL=100years warmlev=1.2-4degC 2

DePreSys 12 9.23 1998-06-27 EU Summer SG Severity RTL=100years warmlev=1.2-4degC 3

DePreSys 23 17.02 2008-04-16 EU Summer SG Severity Maximum 1

DePreSys 19 16.49 2012-04-09 EU Summer SG Severity Maximum 2

DePreSys 12 13.36 2007-04-20 EU Summer SG Severity Maximum 3

Table 22: Table summarising the events selected to represent the European summer-time surplus-generation scenarios in terms of duration and
severity, for each extreme level and warming level(s) of interest. Each event is summarised in terms of the data source (DePreSys or UKCP18); event
duration; event severity; the event start date within the data record; a label explaining the event type, region, metric and return level it represents;
and the number of the event (up to 3 selected to represent each event combination). Here SG=surplus-generation, and RTL=return level.
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A.3 Data download README file

######################################################################################################

README file to explain naming convention and file structure in the ’The Adverse Weather Scenarios for

Future Electricity Systems’ data set

######################################################################################################

The dataset contains time slices of surface temperaure (tas), 100m wind speed (windspeed) and surface

solar radiation (ssr), containing adverse weather scenarios for future electricity systems.

The first set of directories represent the three forms of adverse weather scenario considered:

1. Winter-time wind-drought-peak-demand events (winter_wind_drought)

2. Summer-time wind-drought-peak-demand events (summer_wind_drought)

3. Summer-time surplus renewable generation events (summer_surplus_generation)

Next, the region over which the adverse weather scenario is defined is selected:

1. UK only (uk)

2. Europe as a whole (europe)

Note: UK only events are those that are identified as impacting the UK, but meteorological data for all

of Europe are still provided.

Following this, the return period of interest is selected (i.e. how often the adverse weather scenario

is expected to occur on average). Adverse weather scenarios are available for 6 different return

periods, as well as the three most extreme events in the historical DePreSys hindcast record for that

event type:

1. 1 in 2 year (return_period_1_in_2_years)

2. 1 in 5 year (return_period_1_in_5_years)

3. 1 in 10 year (return_period_1_in_10_years)

4. 1 in 20 year (return_period_1_in_20_years)

5. 1 in 50 year (return_period_1_in_50_years)

6. 1 in 100 year (return_period_1_in_100_years)

7. Most extreme events (most_extreme_events)

Next, the adverse weather scenario metric is selected, representing in what way the event is

characterised, i.e. in terms of:

1. Duration (duration)

2. Severity (severity)

Following this, the global warming level of interest is selected:

1. Global warming level 1.2 degrees Celcius above pre-industrial level (gwl12degC)

2. Global warming level 1.5 degrees Celcius above pre-industrial level (gwl15degC)

3. Global warming level 2 degrees Celcius above pre-industrial level (gwl2degC)

4. Global warming level 3 degrees Celcius above pre-industrial level (gwl3degC)

5. Global warming level 4 degrees Celcius above pre-industrial level (gwl4degC)

In each case, the number of global warming level directories depends how the event duration/severity

changes at different global warming level, according to the statistical extreme value analysis (see

accompanying reports for these results).

c© Crown Copyright 2021, Met Office 82 of 85



For example, for winter-time wind-drought-peak-demand events in the UK with a return period of 1 in 20

years in terms of duration, events are found to be consistent across all global warming levels. This

directory is therefore expressed as ’gwl12-4degC’.

Conversely, for summer-time wind-drought-peak-demand events in Europe with a return period of 1 in 20

years in terms of duration, events are found to differ when the global warming level exceeds 1.5 degrees

Celcius. These directories are therefore expressed as ’gwl12-15degC’, ’gwl2degC’, ’gwl3degC’ and

’gwl4degC’.

Finally, the event number is chosen. In most cases three adverse weather scenarios/events are provided

(selected from the DePreSys hindcast as described in the accompanying reports):

1. Event 1 (event1)

2. Event 2 (event2)

3. Event 3 (event3)

In some cases, where only two events exist within the DePreSys hindcast at the extreme level of

interest, just these two events are provided. In the small number of cases where the DePreSys hindcast

does not contain any events at the extreme level of interest, one event is provided from the UKCP18

global projections.

***NOTE: In the UKCP18 events the 100m wind speed data has been bias corrected but the surface

temperature and surface solar radiation have not.

Each of the event directories then contains the gridded meteorological data associated with the adverse

weather event. Each adverse weather scenario is contained within a time slice of data. For summer-time

events, one calendar year (January - December) of data is provided, with the summer-time event occurring

in the summer of that year. For winter-time events, two calendar years of data are provided, with the

winter-time event occurring in the winter (October-March) intersecting the two calendar years. This data

is privided for surface temperaure (tas), 100m wind speed (windspeed) and surface solar radiation (ssr).

The directory route to the first event representative of a winter-time wind-drought-peak-demand adverse

weather scenario in the UK with a return period of 1 in 20 years in terms of duration and all global

warming levels is therefore:

winter_wind_drought/uk/return_period_1_in_20_years/duration/gwl12-4degC/event1/

And contained within this directory are three NetCDF files, each containing meterological data for the

same time slice but for each of the three meteorological variables:

1. winter_wind_drought_uk_return_period_1_in_20_years_duration_gwl12-4degC_event1_ssr.nc (surface solar

radiation)

2. winter_wind_drought_uk_return_period_1_in_20_years_duration_gwl12-4degC_event1_tas.nc (surface

temperature)

3. winter_wind_drought_uk_return_period_1_in_20_years_duration_gwl12-4degC_event1_windspeed.nc (wind

speed at 100m hieght)

The metadata within each of these NetCDF files describes the data dimenations, details about the

available variables, and global attributes describing the event specification (as described above), and

the start date, duration and severity of the adverse weather scenario contained within the time slice of
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data.

For example, the metadata from the file ’winter_wind_drought/uk/return_period_1_in_20_years/duration/

gwl12-4degC/event1/

winter_wind_drought_uk_return_period_1_in_20_years_duration_gwl12-4degC_event1_tas.nc’ looks like this:

netcdf classic {

dimensions:

longitude = 85 ;

latitude = 81 ;

time = 731 ;

variables:

NC_DOUBLE longitude(longitude) ;

NC_CHAR longitude:units = "degrees_east" ;

NC_CHAR longitude:long_name = "longitude" ;

NC_DOUBLE latitude(latitude) ;

NC_CHAR latitude:units = "degrees_north" ;

NC_CHAR latitude:long_name = "latitude" ;

NC_DOUBLE time(time) ;

NC_CHAR time:units = "hours since 1970-01-01 00:00:00" ;

NC_CHAR time:long_name = "time" ;

NC_DOUBLE t2m(longitude, latitude, time) ;

NC_CHAR t2m:units = "K" ;

NC_DOUBLE t2m:_FillValue = NaN ;

// global attributes:

NC_CHAR :Project = "Adverse weather scenarios for electricity systems Met Office,

National Infrastructure Commition and Climate Change Committee" ;

NC_CHAR :Event specification = "winter_wind_drought_uk_return_period_1_in_20_years_duration_gwl12-4degC" ;

NC_CHAR :Event start date = "2012-02-18" ;

NC_CHAR :Event duration = "13 days" ;

NC_CHAR :Event severity = "7.17 (no units)" ;

NC_CHAR :Domain = "Europe" ;

NC_CHAR :Resolution = "60km" ;

NC_CHAR :Frequency = "daily" ;

NC_CHAR :Calendar = "gregorian" ;

NC_CHAR :Meteorological variable = "Surface air temperature" ;

NC_CHAR :Originating data source = "DePreSys" ;

}
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